您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 人教版高三数学教案(精编4篇)
参考资料,少熬夜!人教版高三数学教案(精编4篇)【导读指引】三一刀客最漂亮的网友为您整理分享的“人教版高三数学教案(精编4篇)”文档资料,供您学习参考,希望此文档对您有所帮助,喜欢就分享给朋友们吧!人教版高三数学教案1学习对数函数的教案设计教学目标1、在指数函数及反函数概念的基础上,使学生掌握对数函数的概念,能正确描绘对数函数的图像,掌握对数函数的性质,并初步应用性质解决简单问题。2、通过对数函数的学习,树立相互联系,相互转化的观点,渗透数形结合,分类讨论的思想。3、通过对数函数有关性质的研究,培养学生观察,分析,归纳的思维能力,调动学生学习的积极性。教学重点,难点重点是理解对数函数的定义,掌握图像和性质。难点是由对数函数与指数函数互为反函数的关系,利用指数函数图像和性质得到对数函数的图像和性质。教学方法启发研讨式教学用具投影仪教学过程一。引入新课今天我们一起再来研究一种常见函数。前面的几种函数都是以形式定义的方式给出的,今天我们将从反函数的角度介绍新的函数。反函数的实质是研究两个函数的关系,所以自然我们应从大家熟悉的函数出发,再研究其反函数。这个熟悉的函数就是指数函数。提问:什么是指数函数?指数函数存在反函数吗?由学生说出是指数函数,它是存在反函数的。并由一个学生口答求反函数的过程:由得。又的值域为,所求反函数为。那么我们今天就是研究指数函数的反函数-----对数函数。二。对数函数的图像与性质(板书)1、作图方法提问学生打算用什么方法来画函数图像?学生应能想到利用互为反函数的两个函数图像之间的关系,利参考资料,少熬夜!用图像变换法画图。同时教师也应指出用列表描点法也是可以的,让学生从中选出一种,最终确定用图像变换法画图。由于指数函数的图像按和分成两种不同的类型,故对数函数的图像也应以1为分界线分成两种情况和,并分别以和为例画图。具体操作时,要求学生做到:(1)指数函数和的图像要尽量准确(关键点的`位置,图像的变化趋势等)。(2)画出直线。(3)的图像在翻折时先将特殊点对称点找到,变化趋势由靠近轴对称为逐渐靠近轴,而的图像在翻折时可提示学生分两段翻折,在左侧的先翻,然后再翻在右侧的部分。学生在笔记本完成具体操作,教师在学生完成后将关键步骤在黑板上演示一遍,画出和的图像。(此时同底的指数函数和对数函数画在同一坐标系内)如图:2、草图。教师画完图后再利用投影仪将和的图像画在同一坐标系内,如图:然后提出让学生根据图像说出对数函数的性质(要求从几何与代数两个角度说明)3、性质(1)定义域:(2)值域:由以上两条可说明图像位于轴的右侧。(3)截距:令得,即在轴上的截距为1,与轴无交点即以轴为渐近线。(4)奇偶性:既不是奇函数也不是偶函数,即它不关于原点对称,也不关于轴对称。(5)单调性:与有关。当时,在上是增函数。即图像是上升的当时,在上是减函数,即图像是下降的。之后可以追问学生有没有最大值和最小值,当得到否定答案时,可以再问能否看待何时函数值为正?学生看着图可以答出应有两种情况:当时,有;当时,有。学生回答后教师可指导学生巧记这个结论的方法:当底数与真数在1的同侧时函数值为正,当底数与真数在1的两侧时,函数值为负,并把它当作第(6)条性质板书记下来。最后教师在总结时,强调记住性质的关键在于要脑中有图。且应将其性质与指数函数的性质对比记忆。(特别强调它们单调性的一致性)参考资料,少熬夜!对图像和性质有了一定的了解后,一起来看看它们的应用。三。巩固练习练习:若,求的取值范围。四。小结五。作业略人教版高三数学教案2一次函数的的教案一、教学目标1、理解一次函数和正比例函数的概念,以及它们之间的关系。2、能根据所给条件写出简单的一次函数表达式。二、能力目标1、经历一般规律的探索过程、发展学生的抽象思维能力。2、通过由已知信息写一次函数表达式的过程,发展学生的数学应用能力。三、情感目标1、通过函数与变量之间的关系的联系,一次函数与一次方程的联系,发展学生的数学思维。2、经历利用一次函数解决实际问题的过程,发展学生的数学应用能力。四、教学重难点1、一次函数、正比例函数的概念及关系。2、会根据已知信息写出一次函数的表达式。五、教学过程1、新课导入有关函数问题在我们日常生活中随处可见,如弹簧秤有自然长度,在弹性限度内,随着所挂物体的重量的'增加,弹簧的长度相应的会拉长,那么所挂物体的重量与弹簧的长度之间就存在某种关系,究竟是什么样的关系,请看:某弹簧的自然长度为3厘米,在弹性限度内,所挂物体的质量x每增加1千克、弹簧长度y增加厘米。(1)计算所挂物体的质量分别为1千克、2千克、3千克、4千克、5千克时弹簧的长度,(2)你能写出x与y之间的关系式吗?分析:当不挂物体时,弹簧长度为3厘米,当挂1千克物体时,增加厘米,总长度为厘米,当增加1千克物体,即所挂物体为2千克时,弹簧又增加厘米,总共增加1厘米,由此可见,所挂物体每增加1千克,弹簧就伸长厘米,所挂物体为x千克,弹簧就伸长厘米,则弹簧总长为原长加伸长的长度,即y=3+。2、做一做某辆汽车油箱中原有汽油100升,参考资料,少熬夜!汽车每行驶50千克耗油9升。你能写出x与y之间的关系吗?(y=或y=100x)接着看下面这些函数,你能说出这些函数有什么共同的特点吗?上面的几个函数关系式,都是左边是因变量,右边是含自变量的代数式,并且自变量和因变量的指数都是一次。3、一次函数,正比例函数的概念若两个变量x,y间的关系式可以表示成y=kx+b(k,b为常数k≠0)的形式,则称y是x的一次函数(x为自变量,y为因变量)。特别地,当b=0时,称y是x的正比例函数。4、例题讲解例1:下列函数中,y是x的一次函数的是()①y=x6;②y=;③y=;④y=7xA、①②③B、①③④C、①②③④D、②③④分析:这道题考查的是一次函数的概念,特别要强调一次函数自变量与因变量的指数都是1,因而②不是一次函数,答案为B人教版高三数学教案3函数的概念数学教案一、教材分析及处理函数是高中数学的重要内容之一,函数的基础知识在数学和其他许多学科中有着广泛的应用;函数与代数式、方程、不等式等内容联系非常密切;函数是近一步学习数学的重要基础知识;函数的概念是运动变化和对立统一等观点在数学中的具体体现;函数概念及其反映出的数学思想方法已广泛渗透到数学的各个领域,《函数》教学设计。对函数概念本质的理解,首先应通过与初中定义的比较、与其他知识的联系以及不断地应用等,初步理解用集合与对应语言刻画的函数概念。其次在后续的学习中通过基本初等函数,引导学生以具体函数为依托、反复地、螺旋式上升地理解函数的本质。教学重点是函数的概念,难点是对函数概念的本质的理解。学生现状学生在第一章的时候已经学习了集合的概念,同时在初中时已学过一次函数、反比例函数和二次函数,那么如何用集合知识来理解函数概念,结合原有的知识背景,活动经验和理解走入今天的课堂,如何有效地激活学生的学习兴趣,让学生积极参与到学习活动中,达到理解知识、掌握方法、提高能力的目的,使学生获得有益有效的学习体验和情感体验,是在教学设计中应思考的。二、教学三维目标分析1、知识与技能(重点和难点)参考资料,少熬夜!(1)、通过实例让学生能够进一步体会到函数是描述变量之间的依赖关系的重要数学模型。并且在此基础上学习应用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用。不但让学生能完成本节知识的学习,还能较好的复习前面内容,前后衔接。(2)、了解构成函数的三要素,缺一不可,会求简单函数的定义域、值域、判断两个函数是否相等等。(3)、掌握定义域的表示法,如区间形式等。(4)、了解映射的概念。2、过程与方法函数的概念及其相关知识点较为抽象,难以理解,学习中应注意以下问题:(1)、首先通过多媒体给出实例,在让学生以小组的形式开展讨论,运用猜想、观察、分析、归纳、类比、概括等方法,探索发现知识,找出不同点与相同点,实现学生在教学中的主体地位,培养学生的创新意识。(2)、面向全体学生,根据课本大纲要求授课。(3)、加强学法指导,既要让学生学会本节知识点,也要让学生会自我主动学习。3、情感态度与价值观(1)、通过多媒体给出实例,学生小组讨论,给出自己的结论和观点,加上老师的辅助讲解,培养学生的实践能力和和大胆创新意识,教案《《函数》教学设计》。(2)、让学生自己讨论给出结论,培养学生的自我动手能力和小组团结能力。三、教学器材多媒体ppt课件四、教学过程教学内容教师活动学生活动设计意图《函数》课题的引入(用时一分钟)配着简单的音乐,从简单的例子引入函数应用的广泛,将同学们的视线引入函数的。学习上听着悠扬的音乐,让同学们的视线全注意在老师所讲的内容上从贴近学生生活入手,符合学生的认知特点。让学生在领略大自然的美妙与和谐中进入函数的世界,体现了新课标的理念:从知识走向生活知识回顾:初中所学习的函数知识(用时两分钟)回顾初中函数定义及其性质,简单回顾一次函数、二次函数、正比例函数、反比例函数的性质、定义及简单作图认真听老师回顾初中知识,发现异同在初中知识的基础上引导学生向更深的内容探索、求知。即复习了所学内容又做了即将所学内容的铺垫思考与讨论:通过给出的问题,引出本节课的主要内容(用时四分钟)给出两个简单的问题让同学们思考,参考资料,少熬夜!讲述初中内容无法给出正确答案,需要从新的高度来认识函数结合老师所回顾的知识,结合自己所掌握的知识,思考老师给出的问题,小组形式作讨论,从简单问题入手,循序渐进,引出本节主要知识,回顾前一节的集合感念,应用到本节知识,前后联系、衔接新知识的讲解:从概念开始讲解本节知识(用时三分钟)详细讲解函数的知识,包括定义域,值域等,回到开始提问部分作答做笔记,专心听讲讲解函数概念,由知识讲解回到问题身上,解决问题对提问的回答(用时五分钟)引导学生自己解决开始所提的两个问题,然后同个互动给出最后答案通过与老师共同讨论回答开始问题,总结更好的掌握函数概念,通过问题来更好的掌握知识函数区间(用时五分钟)引入函数定义域的表示方法简洁明了的方法表示函数的定义域或值域,在集合表示方法的基础上引入另一种方法注意点(用时三分钟)做个简单的的回顾新内容,把难点重点提出来,让同学们记住通过问题回答,概念解答,把重难点给出,提醒学生注意内容和知识点习题(用时十分钟)给出习题,分析题意在稿纸上简单作答,回答问题通过习题练习明确重难点,把不懂的地方记住,课后学生在做进一步的联系映射(用时两分钟)从概念方面讲解映射的意义,象与原象在新知识的基础上了解更多知识,映射的学习给以后的知识内容做更好的铺垫小结(用时五分钟)简单讲述本节的知识点,重难点做笔记前后知识的连贯,总结,使学生更明白知识点五、教学评价为了使学生了解函数概念产生的背景,丰富函数的感性认识,获得认识客观世界的体验,本课采用突出主题,循序渐进,反复应用的方式,在不同的场合考察问题的不同侧面,由浅入深。本课在教学时采用问题探究式的教学方法进行教学,逐层深入,这样使学生对函数概念的理解也逐层深入,从而准确理解函数的概念。函数引入中的三种对应,与初中时学习函数内容相联系,这样起到了承上启下的作用。这三种对应既是函数知识的生长点,又突出了函数的本质,为从数学内部研究函数打下了基础。在培养学生的能力上,本课也进行了整体设计,通过探究、思考,培养了学生的实践能力、观察能力、判断能力;通过揭示对象之间的内在联系,培养了学生的辨证思维能力;通过实际问题的解决,培养了学生的分析问题、解决问题和表达交流能力;通过案例探究,培养了学生的创新意识与探究能力。参考资料,少熬夜!虽然函数概念比较抽象,难以理解,但是通过这样的教学设计,学生基本上能很好地理解了函数概念的本质,达到了课程标准的要求,体现了课改的教学理念。人教版高三数学教案4一、教材分析1、本节内容在全书及章节的地位:《函数的单调性》是必修1第一章第3节,高中数学《函数的单调性》说课稿教案模板是高考的重点考查内容之一,是函数的一个重要性质,在比较几个数的大小、求函数值域、对函数的定性分析以及与其他知识的综合上都有广
本文标题:人教版高三数学教案(精编4篇)
链接地址:https://www.777doc.com/doc-9587693 .html