您好,欢迎访问三七文档
当前位置:首页 > 幼儿/小学教育 > 幼儿教育 > 《三角形三边关系》教学设计精编5篇
参考资料,少熬夜!《三角形三边关系》教学设计精编5篇【导读指引】三一刀客最漂亮的网友为您整理分享的“《三角形三边关系》教学设计精编5篇”文档资料,供您学习参考,希望此文档对您有所帮助,喜欢就分享给朋友们吧!《三角形三边关系》教学设计1教学目标:1、结合具体的情境和直观操作活动,让学生探索并发现三角形任意两边和大于第三边。2、感受动手实验是探索数学规律的途径和方法。3、培养学生初步的应用数学知识解决实际问题的能力。教学重点:在观察、操作、比较、分析中发现三角形边的关系。教学难点:应用三角形边的关系解决问题。教学方法:观察法、动手操作法、小组讨论法教学过程:一、设境导入,猜想质疑小明和我们一样每天都按时上学,请看小明到学校的线路图(课件示)小明上学共有几条路线?有一天小明起来晚了,你们猜猜他肯定会走哪条路去学校?为什么?今天我们用数学知识来解决这个问题,请观察路线①和路线②围成的近似一个什么图形?路线②和路线③又近似一个什么图形?走路线②,走过的路程是三角形的一条边,走旁边的路走过的路程实际上是三角形的另外两条边的和。根据大家的判断,走三角形的两条边的和要比第三边大。是不是所有的三角形的三条边都有这样的关系呢?这节课我们一起来研究一下,板书课题:三角形三条边的关系二、小组合作,实验探究实验1:我们都知道三角形是由三条线段首尾相连围成的封闭图形。现在从学具中任意拿出三根小棒,摆一摆,看看你发现了什么?①学生动手操作。②交流,展示汇报。(出现了两种情况:一种可以摆出三角形,另一种摆不出三角形。)实验2:看来,不是任意三条线段都能围成三角形,有的同学用三根小棒摆成了三角形,有的同学没有摆成,这是什么原因?下面我们就对这两种情况做一个深入参考资料,少熬夜!的探究。①小组按要求合作,完成实验报告单(教师指导)②反馈:A、首先我们看看怎样的三条线段能围成三角形?(生展示汇报,师板书)通过仔细观察发现:任意两条边的和大于第三边。(板书)质疑:‘任意’是什么意思?能举例说明吗?(生汇报)③B、下面我们再来看看怎样的三条线段不能围成三角形?(生展示汇报,师板书)通过对比发现不能围成情况有:a)两边的和小于第三边;b)两边的和等于第三边;检验其他记录的情况,对比发现:两边的和小于或等于第三边就不能围成三角形。(相机板书)小结:通过我们实验观察,知道了三角形的两边之和大于第三边。(出示课件)三、建构模型,联系生活(出示课件)小明上学示意图,现在你能用三角形的三边关系解释小明为什么走中间这条路吗?(同桌互说后,交流)四、巩固应用,深化练习1、做一做:教科书第86页第4题(出示课件)学生独立完成后,汇报方法。优化出快捷的判断方法:用较小的两条边的和大于第三边就可以做到任意两条边的和大于第三条边。2、试一试现在有两根分别是3厘米和7厘米的小棒。猜一猜,与它们能组成三角形的第三根小棒的长是多少厘米?(取整厘米数)(出示课件)学生独立思考30秒后,小组讨论。《三角形三边关系》教学设计2教学目标:1、理解两点之间线段最短,理解三角形任意两边的和大于第三边。2、经历拼一拼、移一移等操作活动,探索、归纳出三角形三边的关系,培养学生自主探索,合作交流、抽象概括能力,积累活动经验。3、渗透模型思想,体验数据分析,数形结合方法在探究过程中的作用。教学重点:理解三角形任意两边之和大于第三边。教学难点:理解两条线段和等于第三条线段时不能围成三角参考资料,少熬夜!形,理解“任意”二字的含义。教学资源:小棒、多煤体课件。教学过程:同学们好,这节课我们研究三角形三边的关系。一、创设情境,导入新课。1、三角形三边的关系教学设计三角形三边的关系教学设计(课件)主题图。小明上学,你猜他会走哪条路?这条路与其他两条路相比有什么特点?(中间这条路直直的,是一条线段,上面哪条路是两条线段组成的,下面这条路是一条曲线。)小明为什么走中间这条路?(这条路最短)课件演示:三条连线比较长短(师:两点之间所有连线中线段最短,这条线段的长度,叫做两点间的距离。)2、实物展台上放三根小棒:,现在这样围成三角形了吗?谁来围一围?刚才没围成三角形,现在就围成了,围成三角形的关键是什么?(每相邻两条线段的端点相连)3、如果从三根小棒中拿走一根,剩下的两根能围成三角形吗?能想办法变成三小棒吗?(把一根小棒剪成两段,变成三根小棒)把两根小棒变成三根,就一定能围成三角形吗?这节课我们一起研究三角形边的关系。板书课题;三角形三边的关系。二、操作演示,观察发现。1、(课件出示四根小棒)有四根小棒6、5、3、2(单位:厘米)2、任意取三根摆一摆三角形,会有几种情况?(课件:①6、5、3;②6、5、2;③6、3、2;④5、3、2。3、请同学们动手摆一摆,并填写好学习单,小组交流有什么发现?。4、组织全班交流:学生边说,老师边课演示。第一种情况:6+5>3,6+3>5,5+3>6;第二种情况:6+5>2,6+2>5,5+2>6;第三种情况:6+3>2,6+2>3,3+2<6;第四种情况;5+3>2,5+2>3,3+2<55、三角形任意两边的和大于第三边。三、实践应用,拓展延伸。在能拼成三角形的各组小棒下面画“√”(单位:cm)四、反思总结,自我建构。这节课你有什么收获?(三角形任意两条边的和大于第三边。)这节课我们就研究到这儿,同学们再见!参考资料,少熬夜!《三角形三边关系》教学设计3教学目标:1、学生能够理解两点之间线段最短及两点间距离的含义,并在操作、观察、归纳等活动中发现、理解三角形中任意两边之和大于第三边的特性。2、培养学生动手实践和观察、归纳的能力。3、能够运用知识解决实际问题。教学过程:一、创设情境,理解两点间的距离。1、出示三角形ABC:从上一节课的学习中我们知道三角形有哪些特性?2、三角形里藏着的知识还多着呢,今天这节课我们继续研究三角形。3、从A点到C点,可以怎么走?相同速度时走哪条路更快到达C点?4、如果增加一条从A点到C点的线,还是AC最短吗?5、你怎么证明?(可以测量)6、从比较中你能得出什么结论?(即两点间线段的长度最短,线段的长度就是两点间的距离。)7、再来观察三角形ABC:能用算式表示AC短于另一条路吗?(AB+BC﹥AC)如果要从B到C呢?AB+AC﹥BC吗?AC+BC﹥AB吗?是不是三角形中两条边相加都会大于另一条边呢?下面我们重点来研究这个问题。二、探究新知1、学生拿出准备好的纸条,从中选择三根纸条,拼拼看。⑴证明要用数据说话,你打算怎样做?⑵拿出纸条后在自由本上记录三根纸条的长度,然后拼拼看,能拼成就在刚才记录的旁边打上对钩。⑶学生开始拼⑷学生汇报,并板演拼的过程。⑸师记录(可以拼成的有:①15厘米、15厘米、15厘米,②15厘米、11厘米、11厘米,③15厘米,11厘米,8厘米,④8厘米、7厘米、5厘米。不能拼成的有:①15厘米、8厘米、7厘米,②15厘米、7厘米、5厘米。)2、观察:能拼成三角形的三根纸条是否符合我们刚才的猜想?⑴学生观察并计算⑵全班汇报交流⑶从刚才的。交流中我们可以得出什么结论?即:三角形里任意两边之和大于第三边。⑷再来观察另外两组数据,为什么不能拼成三角形?参考资料,少熬夜!学生观察思考。⑸同桌交流。⑹全班交流。即:三条边中若有两条边的和小于或等于第三边,就围不成三角形。所以从另外一个角度证明了三角形的三边关系,就是三角形的任意两边之和大于第三边。3、判断下面各组中三条边能否围成三角形教案。单位:厘米⑴9、7、6⑵8、5、3⑶20、15、7⑷17、8、8①学生判断②交流判断的结果及判断的方法③从刚才的交流中同学们发现,要判断三条边能否围成三角形,其实只需要判断什么就可以了?4、小结:同学们通过提出猜想,操作验证并归纳,我们发现了三角形的另一个特性,就是三角形的任意两边之和大于第三边。而猜想、操作、验证、归纳能都是学生数学的重要方法。三、练习1、在能围成三角形的各组小棒下面画对钩。单位:厘米⑴3、4、5⑵3、3、3⑶2、2、6⑷3、3、5学生判断后全班交流。2、用下面的6根小棒,你能摆出几种三角形(单位:厘米)2、2、5、6、6、6⑴学生独立思,并记录⑵全班交流。(①6、6、6②6、6、5③6、6、2④6、2、5)3、现在有两根小棒的长度分别是8厘米和10厘米,请问另外一根小棒的长度可以是多少厘米?最大呢?最小呢?你是怎么想的?⑴学生思考⑵全班交流⑶讨论方法四、评价反思1、今天我们研究了什么问题?2、我们是怎样研究这个问题的?五、作业参考资料,少熬夜!《三角形三边关系》教学设计4教学目标:1、通过量一量、摆一摆、算一算等实验活动,探索并发现三角形任意两边之和大于第三边,并应用这关系解释一些生活现象,解决一些简单的生活问题。2、在实验过程中培养学生的猜想意识、自主探索、合作交流的能力。教学重点、)三一刀客●(难点:探索并发现三角形任意两边之和大于第三边。教学准备:学生、老师各准备几根长短不等的小棒、直尺、探究报告单。教学过程:一、复习旧知,导入新课这是什么图形呢?(三角形)谁来说说什么是三角形?怎样理解这个“围”字(端点首尾相连)。同学们还知道三角形的哪些知识?关于三角形的知识还有很多,我们继续往下看。二、动手操作,发现问题师:老师这里有三根小棒,分别长3、5、10厘米,这3根小棒能围成一个什么图形?生:三角形。师:谁愿意上来围一围?围的时候要注意小棒首尾相连。师:这三根小棒为什么围不成三角形呢?三角形的三条边之间到底有什么关系呢?今天,我们就一起来研究三角形的三边关系(板书课题)。三、猜想验证,发现规律师:我们发现这三根小棒不能围成三角形,怎样做才能围成三角形呢?生:换一根小棒师:怎样换?同学们说的都是你们的猜想(课件1演示猜想1)1、学法指导师:你们的这些猜想是否正确,三角形的三条边到底有什么关系?我们可以通过做实验来验证一下,现在老师给同学们准备了一些材料:3厘米、5厘米、8厘米、10厘米小棒各一根一起试着围一围三角形。同学们亲自动手摆一摆,拼一拼,看看有什么结果。先看要求(大屏幕)。操作要求:(1)、2人一组合作完成四种拼法(2)、围三角形时要注意首尾相连。(3)、完成后,填写好活动记录表准备交流参考资料,少熬夜!第一根小棒长第二根小棒长第三根小棒长能否围成三角形2、动手操作,寻找规律(师巡视,并指导)3、交流汇报,探究规律。师:哪个小组愿意来汇报。小组上台展示,3厘米、8厘米、10厘米能3厘米、5厘米、10厘米不能3厘米、5厘米、8厘米不能5厘米、8厘米、10厘米能师:其它组有不同意见吗?师:仔细观察四种结果,有的围不成,而有的却能围成。这是为什么呢?先看不能围成三角形的每组小棒的长度之间有什么关系?说说你能发现些什么?同桌讨论一下。能围成三角形的这几组小棒长度之间又有什么联系?三根小棒要围成三角形,必须满足什么条件?通过刚才的实验和分析,你发现三角形三条边长度之间有什么关系吗?先看不能围成三角形的这组情况,谁愿意说说3、5、10这三根小棒为什么不能围成三角形?生:师:其他同学赞同吗?谁再来说一说。师:我明白了,3厘米的边是不能和5厘米、10厘米的边围成三角形的,因为这两条边之和小于第三条边。(板书3+4〈8)你很会观察。(演示)师:再说3、5、8这三根,同学们有些争议,到底它们能不能围成三角形呢?不能,为什么?有谁愿意谈谈?生:3+5=8重合了不能师:是这样吗?(课件演示)请看大屏幕。师:真的是这样,通过演示现在明白这个同学的意思了吗?谁愿意再来说一说。师:通过以上的动手操作和探究分析,我们发现了当两边之和小于、等于第三条边时,这3条边是围不成三角形的。师:那么怎样才能围成三角形呢?生:两条边加起来要大于第三边就行了。师(板书):两边之和大于第三边师:我们来看看能围成三角形的这两组是不是这样的呢,3+8>10、8+5>10看起来是这样的。3)师:回头看不能围成的情况,也有3+8>4、4+8参考资料,少熬夜!>3、3+8>5、5+8>3(两边之和大于第三边)的情况,怎么就不能围成三角形呢?生:有一种不符合就不行了。师:看来只是其中的两条边之和大于
本文标题:《三角形三边关系》教学设计精编5篇
链接地址:https://www.777doc.com/doc-9661409 .html