您好,欢迎访问三七文档
当前位置:首页 > 办公文档 > 总结/报告 > 初三数学圆的知识点和公式总结(3篇)
好文供参考!1/9初三数学圆的知识点和公式总结(3篇)【引读】这篇优秀的文档“初三数学圆的知识点和公式总结(3篇)”由网友上传分享,供您参考学习使用,希望此文对您有所帮助,喜欢的话就分享给下载吧!初中数学圆知识点总结1一、圆1、圆的有关性质在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫圆,固定的端点O叫圆心,线段OA叫半径。由圆的意义可知:圆上各点到定点(圆心O)的距离等于定长的点都在圆上。就是说:圆是到定点的距离等于定长的点的集合,圆的内部可以看作是到圆。心的距离小于半径的点的集合。圆的外部可以看作是到圆心的距离大于半径的点的集合。连结圆上任意两点的线段叫做弦,经过圆心的弦叫直径。圆上任意两点间的部分叫圆弧,简称弧。圆的任意一条直径的两个端点分圆成两条弧,每一好文供参考!2/9条弧都叫半圆,大于半圆的弧叫优弧;小于半圆的弧叫劣弧。由弦及其所对的弧组成的圆形叫弓形。圆心相同,半径不相等的两个圆叫同心圆。能够重合的两个圆叫等圆。同圆或等圆的半径相等。在同圆或等圆中,能够互相重合的弧叫等弧。二、过三点的圆l、过三点的圆过三点的圆的作法:利用中垂线找圆心定理不在同一直线上的三个点确定一个圆。经过三角形各顶点的圆叫三角形的外接圆,外接圆的圆心叫外心,这个三角形叫圆的内接三角形。2、反证法反证法的三个步骤:①假设命题的结论不成立;②从这个假设出发,经过推理论证,得出矛盾;③由矛盾得出假设不正确,从而肯定命题的结论正确。例如:求证三角形中最多只有一个角是钝角。证明:设有两个以上是钝角则两个钝角之和180°与三角形内角和等于180°矛盾。好文供参考!3/9不可能有二个以上是钝角。即最多只能有一个是钝角。三、垂直于弦的直径圆是轴对称图形,经过圆心的每一条直线都是它的对称轴。垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。推理1:平分弦(不是直径)的直径垂直于弦,并且平分弦所对两条弧。弦的垂直平分线经过圆心,并且平分弦所对的两条弧。平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一个条弧。推理2:圆两条平行弦所夹的弧相等。四、圆心角、弧、弦、弦心距之间的关系圆是以圆心为对称中心的中心对称图形。实际上,圆绕圆心旋转任意一个角度,都能够与原来的图形重合。顶点是圆心的角叫圆心角,从圆心到弦的距离叫弦心距。定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦心距相等。好文供参考!4/9推理:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中,有一组量相等,那么它们所对应的其余各组量都分别相等。五、圆周角顶点在圆上,并且两边都和圆相交的角叫圆周角。推理1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等。推理2:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径。推理3:如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。初中数学圆知识点总结21、不在同一直线上的三点确定一个圆2、垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧推论1①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧②弦的垂直平分线经过圆心,并且平分弦所对的两条弧③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧好文供参考!5/9推论2圆的两条平行弦所夹的弧相等3、圆是以圆心为对称中心的中心对称图形4、圆是定点的距离等于定长的点的集合5、圆的内部可以看作是圆心的距离小于半径的点的集合6、圆的外部可以看作是圆心的距离大于半径的点的集合7、同圆或等圆的半径相等8、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆9、定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等10、推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等。11定理圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角12、①直线L和⊙O相交d②直线L和⊙O相切d=r③直线L和⊙O相离dr13、切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线好文供参考!6/914、切线的性质定理圆的切线垂直于经过切点的半径15、推论1经过圆心且垂直于切线的直线必经过切点16、推论2经过切点且垂直于切线的直线必经过圆心17、切线长定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角18、圆的外切四边形的两组对边的和相等外角等于内对角19、如果两个圆相切,那么切点一定在连心线上20、①两圆外离dR+r②两圆外切d=R+r③。两圆相交R-rr)④。两圆内切d=R-r(Rr)⑤两圆内含dr)21、定理相交两圆的连心线垂直平分两圆的公共弦22、定理把圆分成n(n≥3):⑴依次连结各分点所得的多边形是这个圆的内接正n边形⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形好文供参考!7/923、定理任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆24、正n边形的每个内角都等于(n-2)×180°/n25、定理正n边形的半径和边心距把正n边形分成2n个全等的直角三角形26、正n边形的面积Sn=pnrn/2p表示正n边形的周长27、正三角形面积√3a/4a表示边长28、如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=429、弧长计算公式:L=n兀R/18030、扇形面积公式:S扇形=n兀R^2/360=LR/231、内公切线长=d-(R-r)外公切线长=d-(R+r)32、定理一条弧所对的圆周角等于它所对的圆心角的一半33、推论1同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等34、推论2半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径35、弧长公式l=a_a是圆心角的弧度数r0扇形面积公式s=1/2__好文供参考!8/9初中数学圆知识点总结31、对称性:a:圆的对称性,虽然其它一些图形也是有,但圆有无数条对称轴这个特性其它图形所没有的,垂径定理,切线长定理,及正n边形的计算都应用到了这个特性。b:旋转不变性,圆心角、弧、弦、弦心距关系,遇到有关圆习题,要抓住这个特性充分利用,许多问题可以找到解题思路。2、三个角:圆心角、圆周角,以及圆内接四边形的外角(对角)这是在有关圆的问题中,找角相等必不可少的方法。3、三个垂直:垂径定理,直径所对的圆周角,切线的性质它可以有效的把许多问题转化到直角三角形中,使问题得以解决。4、四大关系:点与圆的位置关系,直线与圆的`位置关系,圆与圆的位置关系,圆与正多边形的关系,掌握切线的判定和性质以及有关计算是重点。5、有关计算问题:有关线段的计算,正多边形的计算,有关扇形及阴影面积的计算,以及圆柱、圆锥侧面展开图的计算。6、圆中添辅助线一般方法:添与垂径定理相关的好文供参考!9/9辅助线,添与切线有关的辅助线(创造直角的辅助线),添与圆内接四边形相关的辅助线;两圆相交时作公共弦,两圆相切时作分切线,总之添辅助线时,要构造和完善基本图形,切忌破坏图形的完整性。
本文标题:初三数学圆的知识点和公式总结(3篇)
链接地址:https://www.777doc.com/doc-9700436 .html