您好,欢迎访问三七文档
当前位置:首页 > 办公文档 > 工作范文 > 高中数学基本知识点总结精编4篇
精编资料,供您参考高中数学基本知识点总结精编4篇【前言导读】由三一刀客最美丽的网友为您分享整理的“高中数学基本知识点总结精编4篇”文档资料,以供您学习参考,希望这篇文档对您有所帮助,喜欢就分享给朋友们呢!高中数学基本知识点总结1(一)导数第一定义设函数y=f(x)在点x0的某个领域内有定义,当自变量x在x0处有增量△x(x0+△x也在该邻域内)时,相应地函数取得增量△y=f(x0+△x)-f(x0);如果△y与△x之比当△x→0时极限存在,则称函数y=f(x)在点x0处可导,并称这个极限值为函数y=f(x)在点x0处的导数记为f'(x0),即导数第一定义(二)导数第二定义设函数y=f(x)在点x0的某个领域内有定义,当自变量x在x0处有变化△x(x-x0也在该邻域内)时,相应地函数变化△y=f(x)-f(x0);如果△y与△x之比当△x→0时极限存在,则称函数y=f(x)在点x0处可导,并称这个极限值为函数y=f(x)在点x0处的导数记为f'(x0),即导数第二定义(三)导函数与导数如果函数y=f(x)在开区间I内每一点都可导,就称函数f(x)在区间I内可导。这时函数y=f(x)对于区间I内的每一个确定的x值,都对应着一个确定的导数,这就构成一个新的函数,称这个函数为原来函数y=f(x)的导函数,记作y',f'(x),dy/dx,df(x)/dx。导函数简称导数。(四)单调性及其应用1、利用导数研究多项式函数单调性的一般步骤(1)求f¢(x)(2)确定f¢(x)在(a,b)内符号(3)若f¢(x)0在(a,b)上恒成立,则f(x)在(a,b)上是增函数;若f¢(x)2、用导数求多项式函数单调区间的一般步骤(1)求f¢(x)(2)f¢(x)0的解集与定义域的交集的对应区间为增区间;f¢(x)高中数学基本知识点总结2(1)直线的倾斜角定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。因此,倾斜角的取值范围是0°≤α(2)直线的斜率①定义:倾斜角不是90°的直线,它的倾斜角的精编资料,供您参考正切叫做这条直线的斜率。直线的斜率常用k表示。即。斜率反映直线与轴的倾斜程度。②过两点的直线的斜率公式:注意下面四点:(1)当时,公式右边无意义,直线的斜率不存在,倾斜角为90°;(2)k与P1、P2的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。(3)直线方程①点斜式:直线斜率k,且过点注意:当直线的斜率为0°时,k=0,直线的方程是y=y1。当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示。但因l上每一点的横坐标都等于x1,所以它的方程是x=x1。②斜截式:,直线斜率为k,直线在y轴上的截距为b③两点式:(xxx)直线两点④截矩式:其中直线与轴交于点,与轴交于点,即与轴、轴的截距分别为。⑤一般式:(A,B不全为0)⑤一般式:(A,B不全为0)注意:○1各式的适用范围○2特殊的方程如:平行于x轴的直线:(b为常数);平行于y轴的直线:(a为常数);(4)直线系方程:即具有某一共同性质的直线高中数学基本知识点总结3直线的倾斜角:定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。因此,倾斜角的取值范围是0°≤α直线的斜率:①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。直线的斜率常用k表示。即斜率反映直线与轴的倾斜程度。②过两点的直线的斜率公式。注意:(1)当时,公式右边无意义,直线的斜率不存在,倾斜角为90°;(2)k与P1、P2的顺序无关;精编资料,供您参考(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。直线方程:1、点斜式:y-y0=k(x-x0)(x0,y0)是直线所通过的已知点的坐(牛牛范文★)标,k是直线的已知斜率。x是自变量,直线上任意一点的横坐标;y是因变量,直线上任意一点的纵坐标。2、斜截式:y=kx+b直线的斜截式方程:y=kx+b,其中k是直线的斜率,b是直线在y轴上的截距。该方程叫做直线的斜截式方程,简称斜截式。此斜截式类似于一次函数的表达式。3、两点式;(y-y1)/(y2-y1)=(x-x1)/(x2-x1)如果x1=x2,y1=y2,那么两点就重合了,相当于只有一个已知点了,这样不能确定一条直线。如果x1=x2,y1y2,那么此直线就是垂直于X轴的一条直线,其方程为x=x1,不能表示成上面的一般式。如果x1x2,但y1=y2,那么此直线就是垂直于Y轴的一条直线,其方程为y=y1,也不能表示成上面的一般式。4、截距式x/a+y/b=1对x的截距就是y=0时,x的值,对y的截距就是x=0时,y的值。x截距为a,y截距b,截距式就是:x/a+y/b=1下面由斜截式方程推导y=kx+b,-kx=b-y令x=0求出y=b,令y=0求出x=-b/k所以截距a=-b/k,b=b带入得x/a+y/b=x/(-b/k)+y/b=-kx/b+y/b=(b-y)/b+y/b=b/b=1。5、一般式;Ax+By+C=0将ax+by+c=0变换可得y=-x/b-c/b(b不为零),其中-x/b=k(斜率),c/b=‘b’(截距)。ax+by+c=0在解析几何中更常用,用方程处理起来比较方便。高中数学基本知识点总结4集合的分类:(1)按元素属性分类,如点集,数集。(2)按元素的个数多少,分为有/无限集关于集合的概念:(1)确定性:作为一个集合的元素,必须是确定的,这就是说,不能确定的对象就不能构成集合,也就是说,给定一个集合,任何一个对象是不是这个集合的元素也就确定了。(2)互异性:对于一个给定的集合,集合中的元素一定是不同的(或说是互异的),这就是说,集合中精编资料,供您参考的任何两个元素都是不同的对象,相同的对象归入同一个集合时只能算作集合的一个元素。(3)无序性:判断一些对象时候构成集合,关键在于看这些对象是否有明确的标准。集合可以根据它含有的元素的个数分为两类:含有有限个元素的集合叫做有限集,含有无限个元素的集合叫做无限集。非负整数全体构成的集合,叫做自然数集,记作N;在自然数集内排除0的集合叫做正整数集,记作N+或Nx;整数全体构成的集合,叫做整数集,记作Z;有理数全体构成的集合,叫做有理数集,记作Q;(有理数是整数和分数的统称,一切有理数都可以化成分数的形式。)实数全体构成的集合,叫做实数集,记作R。(包括有理数和无理数。其中无理数就是无限不循环小数,有理数就包括整数和分数。数学上,实数直观地定义为和数轴上的'点一一对应的数。)1、列举法:如果一个集合是有限集,元素又不太多,常常把集合的所有元素都列举出来,写在花括号“{}”内表示这个集合,例如,由两个元素0,1构成的集合可表示为{0,1}。有些集合的元素较多,元素的排列又呈现一定的规律,在不致于发生误解的情况下,也可以列出几个元素作为代表,其他元素用省略号表示。例如:不大于100的自然数的全体构成的集合,可表示为{0,1,2,3,…,100}。无限集有时也用上述的列举法表示,例如,自然数集N可表示为{1,2,3,…,n,…}。2、描述法:一种更有效地描述集合的方法,是用集合中元素的特征性质来描述。例如:正偶数构成的集合,它的每一个元素都具有性质:“能被2整除,且大于0”而这个集合外的其他元素都不具有这种性质,因此,我们可以用上述性质把正偶数集合表示为一般地,如果在集合I中,属于集合A的任意一个元素x都具有性质p(x),而不属于集合A的元素都不具有的性质p(x),则性质p(x)叫做集合A的一个特征性质。于是,集合A可以用它的性质p(x)描述为{x∈I│p(x)}例如:集合A={x∈R│x2-1=0}的特征是X2-1=0
本文标题:高中数学基本知识点总结精编4篇
链接地址:https://www.777doc.com/doc-9784450 .html