您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 初中数学精编教学设计
参考资料,少熬夜!初中数学精编教学设计【导读指引】三一刀客最漂亮的网友为您整理分享的“初中数学精编教学设计”文档资料,供您学习参考,希望此文档对您有所帮助,喜欢就分享给朋友们吧!初中数学优秀教学设计1一、教学目标:1、知道一次函数与正比例函数的定义。2、理解掌握一次函数的图象的特征和相关的性质。3、弄清一次函数与正比例函数的区别与联系。4、掌握直线的平移法则简单应用。5、能应用本章的基础知识熟练地解决数学问题。二、教学重、难点:重点:初步构建比较系统的函数知识体系。难点:对直线的平移法则的理解,体会数形结合思想。三、教学过程:1、一次函数与正比例函数的定义:一次函数:一般地,若y=kx+b(其中k,b为常数且k≠0),那么y是一次函数。正比例函数:对于y=kx+b,当b=0,k≠0时,有y=kx,此时称y是x的正比例函数,k为正比例系数。2、一次函数与正比例函数的区别与联系:(1)从解析式看:y=kx+b(k≠0,b是常数)是一次函数;而y=kx(k≠0,b=0)是正比例函数,显然正比例函数是一次函数的特例,一次函数是正比例函数的推广。(2)从图象看:正比例函数y=kx(k≠0)的图象是过原点(0,0)的一条直线;而一次函数y=kx+b(k≠0)的图象是过点(0,b)且与y=kx平行的一条直线。基础训练:1、写出一个图象经过点(1,—3)的函数解析式为?2、直线y=—2X—2不经过第象限,y随x的增大而。3、如果P(2,k)在直线y=2x+2上,那么点P到x轴的距离是?4、已知正比例函数y=(3k—1)x,若y随x的增大而增大,则k是?5、过点(0,2)且与直线y=3x平行的直线是?6、若正比例函数y=(1—2m)x的图像过点A(x1,y1)和点B(x2,y2)当x1<x2时,y1>y2,则m的取值范围是?参考资料,少熬夜!7、若y—2与x—2成正比例,当x=—2时,y=4,则x=时,y=—4。8、直线y=—5x+b与直线y=x—3都交y轴上同一点,则b的值为?9、已知圆O的半径为1,过点A(2,0)的直线切圆O于点B,交y轴于点C。(1)求线段AB的长。(2)求直线AC的解析式。四、教学反思:教师认真备课,查阅资料,搜集有针对性的训练题,学生只要课堂上能按照教师的'思路去做就很高效了。课堂训练以竞赛的形式进行,似乎有一定的刺激性,但缺少后续的刺激活动,学生没有保持住持久的紧张状态。课前先把所有的复习任务都交给学生完成,教师指导学生浏览教材、查阅资料归纳本章的基本概念、基本性质、基本方法,并收集与每个知识点相关的有针对性的问题,也可以自己编题,同时要把每一个问题的答案做出来,尽量要一题多解。再由小组长组织小组成员汇编,在汇编过程中要去粗取精。课堂就是以小组为单位学生展示自己的舞台,在这个舞台上学生是主角,在这个舞台上学生可以成果共享,在这个舞台上学生收获着自己的收获。台上他们是主角,台下他们也是主角。从另一个角度体会到了减轻学生负担的深刻含义,不单指减少学生课后学习的时间,更重要的是提高学生学习的质量、效率,我的这节课失败之处就是过分的注重了前者,而忽略了实效性。那么在今后的复习课教学中我要多思多想、多问多听(问问老师、听听学生的想法),力求在真正减轻学生负担的基础上打造高效课堂。初中数学优秀教学设计2一、教学目标1、知识与技能目标掌握有理数乘法法则,能利用乘法法则正确进行有理数乘法运算。2、能力与过程目标经历探索、归纳有理数乘法法则的过程,发展学生观察、归纳、猜测、验证等能力。3、情感与态度目标通过学生自己探索出法则,让学生获得成功的喜悦。二、教学重点、难点重点:运用有理数乘法法则正确进行计算。难点:有理数乘法法则的探索过程,符号法则及对法则的理解。参考资料,少熬夜!三、教学过程1、创设问题情景,激发学生的求知欲望,导入新课。教师:由于长期干旱,水库放水抗旱。每天放水2米,已经放了3天,现在水深20米,问放水抗旱前水库水深多少米?学生:26米。教师:能写出算式吗?学生:……教师:这涉及有理数乘法运算法则,正是我们今天需要讨论的问题2、小组探索、归纳法则(1)教师出示以下问题,学生以组为单位探索。以原点为起点,规定向东的方向为正方向,向西的方向为负方向。①2×32看作向东运动2米,×3看作向原方向运动3次。结果:向运动米2×3=②—2×3—2看作向西运动2米,×3看作向原方向运动3次。结果:向运动米—2×3=③2×(—3)2看作向东运动2米,×(—3)看作向反方向运动3次。结果:向运动米2×(—3)=④(—2)×(—3)—2看作向西运动2米,×(—3)看作向反方向运动3次。结果:向运动米(—2)×(—3)=(2)学生归纳法则①符号:在上述4个式子中,我们只看符号,有什么规律?(+)×(+)=()同号得(—)×(+)=()异号得(+)×(—)=()异号得(—)×(—)=()同号得②积的绝对值等于。③任何数与零相乘,积仍为。(3)师生共同用文字叙述有理数乘法法则。3、运用法则计算,巩固法则。参考资料,少熬夜!(1)教师按课本P75例1板书,要求学生述说每一步理由。(2)引导学生观察、分析例子中两因数的关系,得出两个有理数互为倒数,它们的积为。(3)学生做练习,教师评析。(4)教师引导学生做例题,让学生说出每步法则,使之进一步熟悉法则,同时让学生总结出多因数相乘的符号法则。
本文标题:初中数学精编教学设计
链接地址:https://www.777doc.com/doc-9801414 .html