您好,欢迎访问三七文档
溶解乙炔技术培训一、溶解乙炔生产技术及工艺目录第一章乙炔的性质及危害第二章溶解乙炔工艺技术、原理第三章溶解乙炔生产和安全操作第四章溶解乙炔气瓶安全管理及使用第五章作业人员安全职责第六章应急处置措施第一章乙炔的性质及危害乙炔是一种不饱和的碳氢化合物。在常温常压下乙炔呈气态,比空气略轻。纯乙炔是一种无色的可燃气体,具有微弱的醚味。用电石制取的工业乙炔,因含有少量的磷化氢和硫化氢等杂质而具有刺鼻的臭味。乙炔的易燃易爆特性乙炔与其它易燃易爆气体相比较,它是最危险的一种。这可以从下面六个特性中看出:1.乙炔的自燃点比较低2.最小点火能最小3.乙炔的爆炸范围大4.乙炔的传播能力强5.乙炔能发生分解爆炸6.乙炔还具有化合爆炸性乙炔燃爆炸的发火源各种发火源中,光能对乙炔几乎没有影响,其他各种发火源都能引起乙炔的燃烧和爆炸。人们对明火(如火焰、电火花、电弧等)比较重视并通过管理加以制止,而对一些不明显而又微小的发火源(如静电、摩擦、撞击、绝热压缩)则容易忽视。1.静电2.摩擦与撞击3.电火花4.绝热压缩5.冲击波乙炔对人体的影响纯乙炔无毒,但具有窒息性。当空气中乙炔浓度达到20%以上时,由于空气中氧含量减少而使人感到呼吸困难或头昏。当空气中乙炔浓度达到40%以上时,人会失神,但无局部症状。此外,乙炔还有阻碍氧化的作用,使脑缺氧,引起昏迷麻醉,但对与氧化无关的生理机能没有影响。对暴露在高浓度乙炔中出现中毒症状者,应立即把他转移到空气新鲜的地方,给予人工呼吸或氧气吸入。生产和使用乙炔的场所要有良好的通风,空气中乙炔的浓度应控制在2.5%的1/3以下,这既然是防爆安全指标,用作卫生指标对健康无害。电石法生产的乙炔中含有H2S、PH3等杂质气体,系极毒无色气体,对人体有害会引起中毒或使症状变化。第二章溶解乙炔工艺技术、原理电石法生产溶解乙炔的原辅材料及产品溶解乙炔生产工艺流程电石法生产溶解乙炔的原辅材料及产品原料电石和水辅料生产溶解乙炔除原料外还需要许多材料,所谓材料指的是一些不进人产品分子中去的物质,但没有它们就生产不出合格产品,我们把这类物质称之为辅料。包括次氯酸钠、氢氧化钠、硫酸、液氯、丙酮、二甲基甲酰胺、无水氯化钙、硅胶、氮气等。溶解乙炔生产工艺流程溶解乙炔生产工艺流程主要由四个生产工序构成即:粗乙炔气的发生;粗乙炔气的净化;乙炔气体的压缩;乙炔气体的充灌。溶解乙炔生产工艺流程工艺流程应满足以下几点要求:发生器的操作压力要低;由于工业电石含有各种杂质,乙炔气中的H2S和PH3的危害很大,必须在流程上专门设置净化工序。应设置气柜。其容积应由生产能力而定,形式有干式和湿式两种,但湿式气柜更有利于安全生产,设置气柜能稳定系统生产操作。压缩机的设计必须考虑恰当的压缩比,控制排气温度,并配置安全阀以防止乙炔气超压而发生分解爆炸。各主要设备都应该设置安全泄压装置。各主要设备之厨应设置阻火装置,低压部分设各种水封器,高压部分设阻火器,以防止偶然爆炸、着火事故发生和事故的蔓延扩大。工艺流程应满足以下几点要求:乙炔气在充瓶之前,必须设干燥器将其中的水分除掉,以防止水份充入气瓶。为保证装置正常运行,应设置必要的自动控制和联锁装置。乙炔管道及管件的材质和直径必须严格遵照,“乙炔站设计规范”的规定。装置所配的电机及其电器元件必须采用最高防爆等级,选用级防爆电气设备。所有乙炔设备及管道必须做静电接地处理,与静电接地网相接,以及时排除装置和管道上产生的静电。第三章溶解乙炔生产和安全操作粗乙炔发生和安全操作粗乙炔净化和安全操作乙炔的压缩与干燥和安全操作乙炔气的充装和安全操作发生工艺与设备发生工序工艺流程采用密闭式发生器制气。电石经破碎后装人电石料桶,由电动葫芦送往发生器顶部卸入上料斗,再卸人下料斗经加料器连续加入发生器内,电石水解成粗乙炔气由发生器顶部逸出,经洗涤器、水封器送人净化工序或气柜。水由顶部加人,电石渣由发生器底部连续和定期排除。由电动葫芦将电石加人到敞开式乙炔发生器。电石与水发生水解反应。生成的粗乙炔气由发生器上部气体出口洗涤冷却后,经安全水封爪水封器送往气柜。电石渣由锥形底部排至电石渣池。乙炔发生器敞开式乙炔发生器耙式搅拌乙炔发生器摇篮式乙炔发生器双挤压式乙炔发生器双挤压式乙炔发生器发生辅助设备破碎机洗涤器安全水封水槽式(湿式)贮气罐低压水分离器低压干燥器加水桶水箱发生设备安全操作发生工序工艺条件确定发生器的反应温度温度高,水解反应速度快;减小溶液粘度,利于反应进行;温度高,乙炔损失少;但是,反应温度也不能过高(如85℃以上)。若温度过高:一、是渣浆的含固量增加。二、是温度高,容易发生溶液局部过热,严重时会产生乙炔分解爆炸,不利安全生产。三、是温度高,乙炔气体中水含量大,加重了后工序的生产负荷。电石粒度电石粒度越小,电石与水的接触面积越大,水解速度也越快。但是,电石粒度也不宜过小,否则水解反应速度过快,使反应热不易移走,发生局部过热而引起乙炔的热聚和分解,进而使温度高而发生爆炸。粒度过大,则电石反应缓慢,在发生器底部排渣时容易夹带未水解的电石,使电石消耗定额上升。操作压力乙炔发生分解爆炸的“临界值”为0.147MPa,在此压力以下,一般不会发生分解爆炸。所以,发生器的操作压力以低压为宜。低压操作时,乙炔在渣水中的溶解损失量也小。搅拌作用乙炔发生器一般都设有搅拌器。在搅拌作用下,电石和水反应生成的可尽快的脱离电石表面,使电石表面不断更新,从而加速水解反应。同时,搅拌有利热量传递,可防止电石反应区的局部过热。乙炔发生器液面控制液面过高气体分离空间小,易使出口乙炔气夹带浆沫,极易堵塞管道和设备。液面过高有向上浸入给料器及料斗的危险。液面过低,则影响加料安全操作,不能保证足够的反应用水和冷却用水量。事故分析与预防敞口式乙炔发生器加料口处着火发火原因有:1、电石粒度过小,粉末电石较多;2、投料速度过快、投料过多;3、加料管被电石渣塞管径变小,导致卡料;4、投料口没有机械抽风装置或自然抽风管堵塞,乙炔扩散差,投料乙炔含量超标;5、投料口没有氮气吹扫装置或装置失灵;6、电石含磷超标或电石硅铁碰撞、使用铁器操作等发火源存在。因此,要采取各项措施防止投料口形成乙炔空气爆炸性混合气体,并控制住点火源。密闭式低压乙炔发生器燃爆事故及预防这种发生器是我国多年来经常使用的一种。这类乙炔发生器的燃爆事故往往发生在氮气置换结束,上料加料阀打开加料瞬间。事故例一:宁波某厂于1986年1月23日上午9时50分,发生器回料时发生着火爆炸,立即通氮气灭火,但又发生二次爆炸。造成二人轻伤,发生厂房玻璃全部震碎,设备无大损坏。事故分析氮气纯度含氧高达40%,实际成了富氧空气。用这样的富氧空气对乙炔发生器进行置换或灭火时,在发生器内部与乙炔气相混合,是极易爆炸的。事故例二武汉某厂于1989年1月25日13时10分左右,1号发生器上料斗加料时,加料桶被掀翻,加料口燃爆事故。当灭火时干粉用完后采用氮气瓶(事后化验含氧33%)灭火,导致发生器料头爆炸,焊缝炸裂,紧接着发生器下部排渣口爆炸,手动排污阀曲柄断裂、筒体被撞击出凹陷。后来又采用氮气汇流排对2号发生器上料头置换,导致料盖炸飞打在窗框后坠地,玻璃震碎,电石飞贱,造成二台发生器损坏,无人员伤亡。事故的原因是:发生器上下料斗间卸料阀漏气,乙炔窜入上料斗,加料时采用不合格氮气(实为富氧空气)置换,加上电石中磷、硫含量超标(事后化验磷化氢为0.14%),电石、硅、铁碰撞发火,导致加料口起火爆炸。采取的处置措施不当导致事故的扩大。粗乙炔净化和安全操作粗乙炔气净化必要性1、乙炔气中的杂质2、硫、磷杂质的危害硫、磷杂质的危害危及安全和使用乙炔中的杂质,尤以磷化氢最危险。乙炔气中含有磷化氢200ppm时,可使乙炔气的自燃点显著降低,在100℃就能发生自燃。硫、磷杂质的危害影响乙炔瓶填料质量未经净化的乙炔气充入乙炔瓶时,乙炔气中的杂质会与填料起反应,生成某些沉积物。使焊缝质量变坏乙炔气中磷、硫杂质在焊接时可能转移到熔融处的金属中,而使焊缝质量变坏。硫、磷杂质的危害使分析仪器产生误差若将乙炔气用于仪器分析,由于磷化氢的存在会使分析结果产生严重误差。会使催化剂中毒失效将粗乙炔气用于有机合成工业,杂质会使催化剂中毒、失效。乙炔净化的方法固体净化法固体净化法的固体净化剂,常以三氯化铁为氧化剂,氯化汞、氯化铜为催化剂,以硅藻土为载体的固体型清净剂。当前世界溶解乙炔发展潮流是以湿法净化取代干法净化,其主要原因是干法净化有如下缺点:1、固体净化剂在净化时产生盐酸和氢气对设备腐蚀严重。2、固体净化剂的再生和更换都要频繁打开净化器。每次打开净化器都先要用氮气置换,净化剂再生或更换后仍要用氮气置换,若置换不完全会产生爆炸性混合气体,威胁安全,并且要损失乙炔气,消耗氮气。3、由于固体净化剂上积存有磷,所以可能在更换净化剂时因与工具接触而引起着火。4、固体净化剂再生更换时需手工操作,故净化剂中有毒物质及粉尘直接损害工人的身体健康,劳动强度也大。5、固体净化剂的操作费用高。每瓶乙炔气的净化费用在人民币0.5一1.0元左右,大约是液体净化剂的5倍,从而提高最了乙炔气的成本。6、固体净化剂失效后必须制定报废,但因含有重金属,弃掉时必须考虑“二次污染”。液体净化法湿法净化是以液体净化剂来除去乙炔气中杂质。常用的液体净化剂有以下几种:1、次氯酸钠溶液;2、硫酸溶液;3、氯水溶液;4、重铬酸盐溶液;5、三氯化铁酸性溶液。乙炔净化工艺过程固体净化工艺流程次氯酸钠净化工艺流程硫酸净化工艺流程氯水净化工艺流程次氯酸钠净化控制要素有效氯含量氯酸钠的清净效果主要取决于次氯酸钠中有效氯的含量。有效氯含量在0.05%以下时清净效果差,而有效氯在0.15%以上时,其中氯易游离出来与乙炔反应生成氯乙炔,遇空气易着火和爆炸;当有效氯含量大于0.25%时,无论是在气相或液相,均容易发生氯与乙炔激烈反应而爆炸,而且阳光都能促进这一爆炸过程;当中和塔换碱又同时排放次氯酸钠溶液、开车前设备管道内空气未排净时均容易发生爆炸。因此,考虑到安全因素又能保证清净效果,有效氯含量应控制在0.05%~0.12%范围内。次氯酸钠pH值若pH值低于7即呈酸性,次氯酸钠氧化能力强,硫磷杂质除去的彻底,但反应激烈对安全有威胁。同时乙炔中生成的氯化物含量可能增高,这也影响乙炔质量。因此综合清净效果和安全这两方面的因素,pH=8~9为合适。氢氧化钠含量氢氧化钠含量直接影响中和效果。正常生产氢氧化钠浓度为5%~15%,浓度再高,比重大、易发泡,不利于正常操作,浓度太低中和效果差。当碱液中碳酸钠含量妻10%时应换碱,否则在该浓度下碳酸钠溶液在1℃时会结晶,堵塞管道。清净塔液面高度一般控制在三分之二左右。因为液面超过气相进口时,会引起系统压力波动,甚至导致液封,乙炔气不能通过。液面太低则易使乙炔气窜入循环泵,使泵压降低,影响净化液循环而降低清净效果,液面太低还可能增加有效氯积聚空间,不利于安全。乙炔气压力与温度压力对净化效果有一定影响,加压有利于化学吸收操作。净化塔操作压力要由发生器压力而定。中、低压净化均能达到净化质量要求。进人净化塔的粗乙炔气体温度应控制35℃以下,原因有两方面:一是反应温度高不安全,易生成氯乙炔,有可能发生爆炸等事故;二是反应温度高净化效果不好。所以,发生器出来的粗乙炔气,一定要冷却降温至35℃以下,方能进人净化塔。次氯酸钠循环法连续补充循环法各工艺参数恒定,以保证稳定的清净效果,并且便于控制,操作简单。但是对于中压清净装置,还是使用间隙补充循环法为好。主要是防止中压乙炔气窜入次氯酸钠配制槽,而发生危险。事故分析与预防事故例一:沈阳市某厂1988年11月13日10时许,乙炔发生器压力升高造成V型压力计水窜,班长补加色水后约半小时,净化厂房内突然发生爆炸,厂房倒塌,发生火灾,三层楼的发生厂房设备严重损坏,当场死亡2人,重伤1人,轻伤10余人。事故后分析,由于乙
本文标题:溶解乙炔技术培训
链接地址:https://www.777doc.com/doc-981905 .html