您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 初三数学公开课教案(精编5篇)
写作好帮手1/24初三数学公开课教案(精编5篇)【导读】这篇文档“初三数学公开课教案(精编5篇)”由三一刀客最美丽善良的网友为您分享整理的,供您参考学习,希望这篇文档对您有所帮助,喜欢就分享给朋友们下载吧!初三数学教学设计1图形的旋转1、了解旋转及其旋转中心和旋转角的概念,了解旋转对应点的概念及其应用它们解决一些实际问题。2、通过复习平移、轴对称的有关概念及性质,从生活中的数学开始,经历观察,产生概念,应用概念解决一些实际问题。3、旋转的基本性质。重点旋转及对应点的有关概念及其应用。难点旋转的基本性质。一、复习引入(学生活动)请同学们完成下面各题。1、将如图所示的四边形ABCD平移,使点B的对应写作好帮手2/24点为点D,作出平移后的图形。2、如图,已知△ABC和直线l,请你画出△ABC关于l的对称图形△A′B′C′。3、圆是轴对称图形吗?等腰三角形呢?你还能指出其它的吗?(口述)老师点评并总结:(1)平移的有关概念及性质。(2)如何画一个图形关于一条直线(对称轴)的对称图形并口述它具有的一些性质。(3)什么叫轴对称图形?二、探索新知我们前面已经复习平移等有关内容,生活中是否还有其它运动变化呢?回答是肯定的,下面我们就来研究。1、请同学们看讲台上的大时钟,有什么在不停地转动?旋转围绕什么点呢?从现在到下课时针转了多少度?分针转了多少度?秒针转了多少度?(口答)老师点评:时针、分针、秒针在不停地转动,它们都绕时钟的中心。从现在到下课时针转了________度,分针转了________度,秒针转了________度。2、再看我自制的好像风车风轮的玩具,它可以不停地转动。如何转到新的位置?(老师点评略)写作好帮手3/243、第1,2两题有什么共同特点呢?共同特点是如果我们把时钟、风车风轮当成一个图形,那么这些图形都可以绕着某一固定点转动一定的角度。像这样,把一个图形绕着某一点O转动一个角度的图形变换叫做旋转,点O叫做旋转中心,转动的角叫做旋转角。如果图形上的点P经过旋转变为点P′,那么这两个点叫做这个旋转的对应点。下面我们来运用这些概念来解决一些问题。例1如图,如果把钟表的指针看做三角形OAB,它绕O点按顺时针方向旋转得到△OEF,在这个旋转过程中:(1)旋转中心是什么?旋转角是什么?(2)经过旋转,点A,B分别移动到什么位置?解:(1)旋转中心是O,∠AOE,∠BOF等都是旋转角。(2)经过旋转,点A和点B分别移动到点E和点F的位置。自主探究:请看我手里拿着的硬纸板,我在硬纸板上挖下一个三角形的洞,再挖一个点O作为旋转中心,把挖好的硬写作好帮手4/24纸板放在黑板上,先在黑板上描出这个挖掉的三角形图案(△ABC),然后围绕旋转中心O转动硬纸板,在黑板上再描出这个挖掉的三角形(△A′B′C′),移去硬纸板。(分组讨论)根据图回答下面问题(一组推荐一人上台说明)1、线段OA与OA′,OB与OB′,OC与OC′有什么关系?2、∠AOA′,∠BOB′,∠COC′有什么关系?3、△ABC与△A′B′C′的形状和大小有什么关系?老师点评:=OA′,OB=OB′,OC=OC′,也就是对应点到旋转中心的距离相等。2、∠AOA′=∠BOB′=∠COC′,我们把这三个相等的角,即对应点与旋转中心所连线段的夹角称为旋转角。3、△ABC和△A′B′C′形状相同和大小相等,即全等。综合以上的实验操作得出:(1)对应点到旋转中心的距离相等;(2)对应点与旋转中心所连线段的夹角等于旋转角;(3)旋转前、后的图形全等。例2如图,△ABC绕C点旋转后,顶点A的对应写作好帮手5/24点为点D,试确定顶点B的对应点的位置,以及旋转后的三角形。分析:绕C点旋转,A点的对应点是D点,那么旋转角就是∠ACD,根据对应点与旋转中心所连线段的夹角等于旋转角,即∠BCB′=∠ACD,又由对应点到旋转中心的距离相等,即CB=CB′,就可确定B′的位置,如图所示。解:(1)连接CD;(2)以CB为一边作∠BCE,使得∠BCE=∠ACD;(3)在射线CE上截取CB′=CB,则B′即为所求的B的对应点;(4)连接DB′,则△DB′C就是△ABC绕C点旋转后的图形。三、课堂小结(学生总结,老师点评)本节课应掌握:1、对应点到旋转中心的距离相等;2、对应点与旋转中心所连线段的夹角等于旋转角;3、旋转前、后的图形全等及其它们的应用。四、作业布置教材第62~63页习题4,5,6.写作好帮手6/24初三数学教学设计2二次根式教材内容1、本单元教学的主要内容:二次根式的概念;二次根式的加减;二次根式的乘除;最简二次根式。2、本单元在教材中的地位和作用:二次根式是在学完了八年级下册第十七章《反比例正函数》、第十八章《勾股定理及其应用》等内容的基础之上继续学习的,它也是今后学习其他数学知识的基础。教学目标1、知识与技能(1)理解二次根式的概念。(2)理解(a≥0)是一个非负数,()2=a(a≥0),=a(a≥0)。(3)掌握•=(a≥0,b≥0),=•;=(a≥0,b0),=(a≥0,b0)。(4)了解最简二次根式的概念并灵活运用它们对二次根式进行加减。2、过程与方法(1)先提出问题,让学生探讨、分析问题,师生写作好帮手7/24共同归纳,得出概念。再对概念的内涵进行分析,得出几个重要结论,并运用这些重要结论进行二次根式的计算和化简。(2)用具体数据探究规律,用不完全归纳法得出二次根式的乘(除)法规定,并运用规定进行计算。(3)利用逆向思维,得出二次根式的乘(除)法规定的逆向等式并运用它进行化简。(4)通过分析前面的计算和化简结果,抓住它们的共同特点,给出最简二次根式的概念。利用最简二次根式的概念,来对相同的二次根式进行合并,达到对二次根式进行计算和化简的目的。3、情感、态度与价值观通过本单元的学习培养学生:利用规定准确计算和化简的严谨的科学精神,经过探索二次根式的重要结论,二次根式的乘除规定,发展学生观察、分析、发现问题的能力。教学重点1、二次根式(a≥0)的内涵。(a≥0)是一个非负数;()2=a(a≥0);=a(a≥0)及其运用。2、二次根式乘除法的规定及其运用。3、最简二次根式的概念。4、二次根式的加减运算。写作好帮手8/24教学难点1、对(a≥0)是一个非负数的理解;对等式()2=a(a≥0)及=a(a≥0)的理解及应用。2、二次根式的乘法、除法的条件限制。3、利用最简二次根式的概念把一个二次根式化成最简二次根式。教学关键1、潜移默化地培养学生从具体到一般的推理能力,突出重点,突破难点。2、培养学生利用二次根式的规定和重要结论进行准确计算的能力,培养学生一丝不苟的科学精神。单元课时划分本单元教学时间约需11课时,具体分配如下:二次根式3课时二次根式的乘法3课时二次根式的加减3课时教学活动、习题课、小结2课时初三数学教学设计3一元二次方程建立一元二次方程模型教学目标写作好帮手9/241、在把实际问题转化为一元二次方程的模型的过程中,形成对一元二次方程的感性认识。2、理解一元二次方程的定义,能识别一元二次方程。3、知道一元二次方程的一般形式,能熟练地把一元二次方程整理成一般形式,能写出一般形式的二次项系数、一次项系数和常数项。重点难点重点:能建立一元二次方程模型,把一元二次方程整理成一般形式。难点:把实际问题转化为一元二次方程的模型。教学过程(一)创设情境前面我们曾把实际问题转化成一元一次方程和二元一次方程组的模型,大家已经感受到了方程是刻画现实世界数量关系的工具。本节课我们将继续进行建立方程模型的探究。1、展示课本问题一引导学生设人行道宽度为xm,表示草坪边长为35-2xm,找等量关系,列出方程。(35-2x)2=900①2、展示课本问题二写作好帮手10/24引导思考:小明与小亮第一次相遇以后要再次相遇,他们走的路程有何关系?怎样用他们再次相遇的时间表示他们各自行驶的路程?通过思考上述问题,引导学生设经过ts小明与小亮相遇,用s表示他们各自行驶的路程,利用路程方面的等量关系列出方程2t+×=3t②3、能把①,②化成右边为0,而左边是只含有一个未知数的二次多项式的形式吗?让学生展开讨论,并引导学生把①,②化成下列形式:4x2-140x+32③=0④(二)探究新知1、观察上述方程③和④,启发学生归纳得出:如果一个方程通过移项可以使右边为0,而左边是只含有一个未知数的二次多项式,那么这样的方程叫作一元二次方程,它的一般形式是:ax2+bx+c=0,(a,b,c是已知数且a≠0),其中a,b,c分别叫作二次项系数、一次项系数、常数项。2、让学生指出方程③,④中的二次项系数、一次项系数和常数项。写作好帮手11/24(三)讲解例题例1:把方程(x+3)(3x-4)=(x+2)2化成一般形式,并指出它的二次项系数、一次项系数和常数项。[解]去括号,得3x2+5x-12=x2+4x+4,化简,得2x2+x-16=0。二次项系数是2,一次项系数是1,常数项是-16。点评:一元二次方程的一般形式ax2+bx+c=0(a≠0)具有两个特征:一是方程的右边为0,二是左边二次项系数不能为0。此外要使学生认识到:二次项系数、一次项系数和常数项都是包括符号的。例2:下列方程,哪些是一元一次方程?哪些是一元二次方程?(1)2x+3=5x-2;(2)x2=25;(3)(x-1)(x-2)=x2+6;(4)(x+2)(3x-1)=(x-1)2。[解]方程(1),(3)是一元一次方程;方程(2),(4)是一元二次方程。点评:通过一元一次方程与一元二次方程的比较,使学生深刻理解一元二次方程的意义。(四)应用新知课本,练习第3题,(五)课堂小结1、一元二次方程的显著特征是:只有一个未知数,写作好帮手12/24并且未知数的次数是2。2、一元二次方程的一般形式为:ax2+bx+c=0(a≠0),一元二次方程的二次项系数、一次项系数、常数项都是根据一般形式确定的。3、在把实际问题转化为一元二次方程模型的过程中,体会学习一元二次方程的必要性和重要性。(六)思考与拓展当常数a,b,c满足什么条件时,方程(a-1)x2-bx+c=0是一元二次方程?这时方程的二次项系数、一次项系数分别是什么?当常数a,b,c满足什么条件时,方程(a-1)x2-bx+c=0是一元一次方程?当a≠1时是一元二次方程,这时方程的二次项系数是a-1,一次项系数是-b;当a=1,b≠0时是一元一次方程。布置作业课本习题中A组第1,2,3题。教学后记:初三数学教学设计4(一)教材的地位和作用《相似三角形的应用》选自人民教育出版社义务教育课程标准实验教科书中数学九年级上册第二十七章。写作好帮手13/24相似与轴对称、平移、旋转一样,也是图形之间的一种变换,生活中存在大量相似的图形,让学生充分感受到数学与现实世界的联系。相似三角形的知识是在全等三角形知识的基础上的拓展和延伸,相似三角形承接全等三角形,从特殊的相等到一般的成比例予以深化。在这之前学生已经学习了相似三角形的定义、判定,这为本节课问题的探究提供了理论的依据。本节内容是相似三角形的有关知识在生产实践中的广泛应用,通过本节课的学习,一方面培养学生解决实际问题的能力,另一方面增强学生对数学知识的不断追求。(二)教学目标1、。知识与能力:1)进一步巩固相似三角形的知识。2)能够运用三角形相似的知识,解决不能直接测量物体的长度和高度(如测量金字塔高度问题、测量河宽问题)等的一些实际问题。2、过程与方法:经历从实际问题到建立数学模型的过程,发展学生的抽象概括能力。3、情感、态度与价值观:1)通过利用相似形知识解决生活实际问题,使学生体验数学来源于生活,服务于生活。写作好帮手14/242)通过对问题的探究,培养学生认真踏实的学习态度和科学严谨的学习方法,通过获得成功的经验和克服困难的经历,增进数学学习的信心。(三)教学重点、难点和关键重点:利用相似三角形的知识解决实际问题。难点:运用相似三角形的判定定理构造相似三角形解决实际问题。关键:将实际问题转化为数学模型,利用所学的知识来进行解答。教法与学法(一)
本文标题:初三数学公开课教案(精编5篇)
链接地址:https://www.777doc.com/doc-9828564 .html