您好,欢迎访问三七文档
当前位置:首页 > 办公文档 > 心得体会 > 小学数学教学案例(精编5篇)
参考资料,少熬夜!小学数学教学案例(精编5篇)【导读指引】三一刀客最漂亮的网友为您整理分享的“小学数学教学案例(精编5篇)”文档资料,供您学习参考,希望此文档对您有所帮助,喜欢就分享给朋友们吧!高中数学教学案例1高中数学教学案例:指数函数的图像与性质提出问题:新课程认为知识不是单方面通过教师传授得到的,而是学生在一定的情境中,运用已有的学习经验,并通过与他人(教师指导和同学的帮助)协作,主动建构而获得的。它强调以学生为中心,视学生为认知的主体,教师只对学生的意义建构起帮助和促进作用。通过多年教学实践和对新课程的认识,我认为若遵循这个原则进行数学课堂教学,学生的学习将是一种高效的活动。教材中的地位:本节内容是在指数范围扩充到实数的基础上引入指数函数的,而指数函数是高中研究的第一种具体函数。是在初中已经初步探讨了正比例函数,反比例函数,一次函数,二次函数的图像和性质的基础上,在进一步学习了函数的概念及有关性质的前提下,去研究学习的。重点是指数函数的图像及性质,难点在于弄清楚底数a对于函数变化的影响。这节课主要是学生利用描点法画出函数的图像,并描述出函数的图像特征,从而指出函数的性质。使学生从形到数的熟悉,体验研究函数的过程与思路,实现意识的深化。设计背景:在新教材的教学中,我慢慢体会到新教材渗透的、螺旋式上升的基本理念,知识点的形成过程经历从具体的实例引入,形成概念,再次运用于实际问题或具体数学问题的过程,它的应用性,实用性更明显的体现出来。学数学重在培养学生的思维品质,经过多年的数学学习,学生还是害怕学数学,尤其高中的数学,它对于学生来说显得很抽象。所以如果再让让学生感到数学离我们的生活太远,那么将很难激发他们的学习爱好。所以在教学中我尽力抓住知识的本质,以实际问题引入新知识。另外,就本章来说,指数函数是学习函数概念及基本性质之后研究的第一个重要的函数,让学生学会研究一个新的具体函数的方法比学会本身的知识更重要。在这个过程中,所有的知≤≥识都是生疏的,在大脑中没有形成基本的框架结构,需要老师的引导,使他们逐渐建立。数学中任何知识的形成都体现出它的思想与方法,因而参考资料,少熬夜!授课中注重让学生领悟其中的思想,运用其中的方法去学习新的知识,是非常重要的。教学目标:一、知识:理解指数函数的定义,能初步把握指数函数的图像,性质及其简单应用。二、过程与方法:由实例引入指数函数的概念,利用描点作图的方法做出指数函数的图像,(有条件的话借助计算机演示验证指数函数图像)由图像研究指数函数的性质。利用性质解决实际问题。三、能力:1.通过指数函数的图像和性质的研究,培养学生观察,分析和归纳的能力,进一步体会数形结合的思想方法。2.通过对指数函数的研究,使学生能把握函数研究的基本方法。教学过程:由实际问题引入:问题1:某种细胞分裂时,由1个分裂成2个,2个分裂成4个,„1个这样的细胞分裂x次后,得到的细胞的个数y与x之间的关系是什么?分裂次数与细胞个数1,2;2,2×2=22;3,2×2×2=23;„„„„;x,2×2×……×2=2x归纳:y=2x问题2:某种放射性物质不断变化为其它物质,每经过1年剩留的这种物质是原来的84%,那么经过x年后剩留量y与x的关系是什么?经过1年,剩留量y=1×84%=;经过2年,剩留量y=×=„„„„经过x年,剩留量y=寻找异同:你能从以上的两个例子中得到的关系式里找到什么异同点吗?共同点:变量x与y构成函数关系式,是指数的形式,自变量在指数位置,底数是常数;不同点:底数的取值不同。那么,今天我们来学习新的一个基本函数:指数函数得到指数函数的定义:定义:形如y=ax(a0且a≠1)的函数叫做指数函数。在以前我们学过的函数中,一次函数用形如参考资料,少熬夜!y=kx+b(k≠0)的形式表示,反比例函数用形如y=k/x(k≠0)表示,二次函数y=ax2+bx+c(a≠0)表示。对于其一般形式上的系数都有相应的限制。问:为什么指数函数对底数有这样的要求呢?若a=0,当x0时,恒等于0,没有研究价值;当x≤0时,无意义。若a若a=1,则=1,是一个常量,也没有研究的必要。所以有规定且a0且a≠1。由定义,我们可以对指数函数有一初步熟悉。进一步理解函数的定义:指数函数的定义域:在我们学过的指数运算中,指数可以是有理数,当指数是无理数时,也是一个确定的实数,对于无理数,学过的有理指数幂的性质和运算法则都适用,所以指数函数的定义域为R.研究函数的途径:由函数的图像的性质,从形与数两方面研究。学习函数的一个很重要的目标就是应用,那么首先要对函数作一研究,研究函数的图像及性质,然后利用其图像性质去解决数学问题和实际问题。根据以往的经验,你会从那几个角度考虑?(图像的分布范围,图像的变化趋势,„)图像的分布情况与函数的定义域,值域有关,函数的变化趋势体现函数的单调性。引导学生从定义域,值域,单调性,奇偶性,与坐标轴的交点情况着手开始。首先我们做出指数函数的图像,我们研究一般性的事物,常用的方法是:由特殊到一般。我们以具体函数入手,让学生以小组形式取不同底数的指数函数画它们的图像,将学生画的函数图像展示,(画函数的图像的步骤是:列表,描点,连线。)。最后,老师在黑板(电脑)上演示列表,描点,连线的过程,并且,画出取不同的值时,函数的图像。要求学生描述出指数函数图像的特征,并试着描述出性质。数学发展的历史表明,每一个重要的数学概念的形成和发展,其中都有丰富的经历,新课程较好的体现了这点。对新课程背景下的学生而言,数学的知识应该是一个数学化的过程,即通过对常识材料进行细致的观察、思考,借助于分析、比较、综合、抽象、概括等思维活动,对常识材料进行去粗取精、去伪存真的精加工。该案例正是从数学研究和数学实验的过程中参考资料,少熬夜!进行设计。虽然学生的思维不一定真实的重演了人类对数学知识探索的全过程,但确确实实通过实验、观察、比较、分析、归纳、抽象、概括等思维活动,在探索中将数学数学化,从而才使学生对数学学习产生了乐趣,对数学的研究方法有了一定的了解。虽然学生要学的数学是历史上前人已建构好了的,但对他们而言,仍是全新的、未知的,需要用他们自己的学习活动来再现类似的过程。该案例正是从创设问题情景作为教学设计的重要的内容之一。教师应该把教学设计成学生动手操作、观察猜想、揭示规律等一系列过程,侧重于学生的探索、分析与思考,侧重于过程的探究及在此过程中所形成的一般数学能力。教师的地位应由主导者转变为引导者,使教学活动真正成为学生的活动。在教学过程中,把学习的主动权交给学生,在时间和空间上保证学生在教师的指导下,学生能自己独立自主的探究学习。使教学活动始终处于学生的“最近发展区”,使每一个学生通过自己的努力,在自己原有的基础上都有所获,都有提高。总之,通过案例研究,不断研究新教材、新理念,不断调整教学策略优化课堂教学,培养学生探究学习与创新学习能力将是我们在数学教学中要继续探究的课题。高中数学教学案例2教学精细化管理有三个层面的涵义。1、“细”,即管理覆盖的教学环节要全。在计划制定、个人备课、集体备课、上课、课后反思、辅导、测试、反馈、总结和教学评价等各环节都要制定规章,不可或缺。只有关注每个环节、每个细节,才不至于影响系统整体功能的发挥。2、“精”,即管理工作要突出重点。学校要根据实际确定每个时期的教学管理工作重点,重点工作重点做,才能把握住方向,才能立竿见影出效益。不分主次地平均用力往往事倍功半。3、“精细化管理”要制度化,落实要到位。有制度不落实等于没制度,落实不坚决、不坚持,也不出效益。情境教学,即构建一个以情境为基础,学生在学习中成为提出问题和解决问题的主体,使教学过程成为学生主动获取知识、发展能力、体验数学的过程。“正弦定理”是全日制普通高级中学教科书(试验修订本)数参考资料,少熬夜!学第一册(下)的教学内容之一,既是初中“解直角三角形”内容的直接延伸,也是三角函数一般知识和平面向量知识在三角形中的具体运用,是解可转化为三角形计算问题的其它数学问题及生产、生活实际问题的重要工具,因此具有广泛的应用价值。本次课的主要任务是引入并证明正弦定理,我们希望通过本课题探索情境教学在高中数学教学中的应用方法和效果。一、教学设计1、创设一个现实问题情境作为提出问题的背景;2、启发、引导学生提出自己关心的现实问题,逐步将现实问题转化、抽象成过渡性数学问题,解决过渡性问题时需要使用正弦定理,借此引发学生的认知冲突,揭示解斜三角形的必要性,并使学生产生进一步探索解决问题的动机。然后引导学生抓住问题的数学实质,将过渡性问题引伸成一般的数学问题:已知三角形的两条边和一边的对角,求另一边的对角及第三边。解决这两个问题需要先回答目标问题:在三角形中,两边与它们的对角之间有怎样的关系?3、为了解决提出的目标问题,引导学生回到他们所熟悉的直角三角形中,得出目标问题在直角三角形中的解,从而形成猜想,然后引导学生对猜想进行验证。二、教学过程1、设置情境利用投影展示:一条河的两岸平行,河宽d=1km,因上游突发洪水,在洪峰到来之前,急需将码头A处囤积的重要物资及人员用船转运到正对岸的码头B处或其下游1km的码头C处。已知船在静水中的速度∣vl∣=5km∕h,水流速度∣v2∣=3km∕h。2、提出问题师:为了确定转运方案,请同学们设身处地地考虑一下有关的问题,将各自的问题经小组(前后4人为一小组)汇总整理后交给我。待各小组将题纸交给老师后,老师筛选几张有代表性的题纸通过投影向全班展示,经大家归纳整理后得到如下的5个问题:(l)船应开往B处还是C处?(2)船从A开到B、C分别需要多少时间?(3)船从A到B、C的距离分别是多少?(4)船从A到B、C时的速度大小分别是多少?(5)船应向什么方向开,才能保证沿直线到达B、C?师:大家讨论一下,应该怎样解决上述问题?大家经过讨论达成如下共识:要回答问题(l),需要解决问题(2),要解决问题(2),需要先解决问题(3)和(4),问题(3)用直角三角形知识可解,所以重点是解参考资料,少熬夜!决问题(4),问题(4)与问题(5)是两个相关问题,因此,解决上述问题的关键是解决问题(4)和(5)。师:请同学们根据平行四边形法则,先在练习本上做出与问题对应的示意图,明确已知什么,要求什么,怎样求解。生:船从A开往B的情况如图2,根据平行四边形的性质及解直角三角形的知识,可求得船在河水中的速度大小∣v∣及vl与v2的夹角θ:生:船从A开往C的情况如图3,∣AD∣=∣v1∣=5,∣DE∣=∣AF∣=∣v2∣=3,易求得∠AED=∠EAF=450,还需求θ及v。我不知道怎样解这两个问题,因为以前从未解过类似的问题。师:请大家想一下,这两个问题的数学实质是什么?部分学生:在三角形中,已知两边和其中一边的对角,求另一边的对角和第三边。师:请大家讨论一下,如何解决这两个问题?生:在已知条件下,若能知道三角形中两条边与其对角这4个元素之间的数量关系,则可以解决上述问题,求出另一边的对角。生:如果另一边的对角已经求出,那么第三个角也能够求出。只要能知道三角形中两条边与其对角这4个元素的数量关系,则第三边也可求出。生:在已知条件下,如果能知道三角形中三条边和一个角这4个元素之间的数量关系,也能求出第三边和另一边的对角。师:同学们的设想很好,只要能知道三角形中两边与它们的对角间的数量关系,或者三条边与一个角间的数量关系,则两个问题都能够顺利解决。下面我们先来解答问题:三角形中,任意两边与其对角之间有怎样的数量关系?3、解决问题师:请同学们想一想,我们以前遇到这种一般问题时,是怎样处理的?众学生:先从特殊事例入手,寻求答案或发现解法。直角三角形是三角形的特例,可以先在直角三角形中试探一下。师:请各小组研究在Rt△ABC中,任意两边及其对角这4个元素间有什么关系?多数小组很快得出结论:a/sinA=b/sinB=c/sinC。师:a/sinA=b/sinB=c/sinC在非Rt△ABc中是否成立?众学生:不一定,可以先用具体例子检验。若有一个不成立,则否定
本文标题:小学数学教学案例(精编5篇)
链接地址:https://www.777doc.com/doc-9990110 .html