您好,欢迎访问三七文档
当前位置:首页 > 临时分类 > 高中数学说课稿(精选4篇)
高中数学说课稿(精选4篇)【导读】这篇文档“高中数学说课稿(精选4篇)”由三一刀客最漂亮的网友为您分享整理,希望这篇范文对您有所帮助,喜欢就下载吧!高中数学说课稿【第一篇】后面为你推荐更多高中数学说课稿!数学:人教A版必修3第二章第三节《变量之间的相关关系》说课稿各位老师:大家好!我叫***,来自**。我说课的题目是《变量之间的相关关系》,内容选自于高中教材新课程人教A版必修3第二章第三节,课时安排为三个课时,本节课内容为第一课时。下面我将从教材分析、教学目标分析、教学方法与手段分析、教学过程分析四大方面来阐述我对这节课的分析和设计:一、教材分析1.教材所处的地位和作用本章我们所要学习的主要内容就是统计,在前面的章节中我们已经对统计的相关知识作了大致的了解。本节课我们要继续探讨的是变量之间的相关关系,它为接下来要学习的两个变量的线性相关打下基础。这是一个与现实实际生活联系很紧密的知识,在教师的引导下,可使学生认识到在现实世界中存在不能用函数模型描述的变量关系,从而体会研究变量之间的相关关系的重要性.2.教学的重点和难点重点:①通过收集现实问题中两个有关联变量的数据直观认识变量间的相关关系;②利用散点图直观认识两个变量之间的线性关系;难点:①变量之间相关关系的理解;②作散点图和理解两个变量的正相关和负相关二、教学目标分析1.知识与技能目标通过收集现实问题中两个有关联变量的数据认识变量间的相关关系2、过程与方法目标:明确事物间的相互联系.认识现实生活中变量间除了存在确定的关系外,仍存在大量的非确定性的相关关系,并利用散点图直观体会这种相关关系.3、情感态度与价值观目标:通过对事物之间相关关系的了解,让学生们认识到现实中任何事物都是相互联系的辩证法思想。三、教学方法与手段分析1.教学方法:结合本节课的教学内容和学生的认知水平,在教法上,我采用“问答探究”式的教学方法,层层深入。充分发挥教师的主导作用,让学生真正成为教学活动的主体。2。教学手段:通过多媒体辅助教学,充分调动学生参与课堂教学的主动性与积极性。四、教学过程分析㈠问题引出:请同学们如实填写下表(在空格中打“√”)然后回答如下问题:①“你的数学成绩对你的物理成绩有无影响?”②“如果你的数学成绩好,那么你的物理成绩也不会太差,如果你的数学成绩差,那么你的物理成绩也不会太好。”对你来说,是这样吗?同意这种说法的同学请举手。根据同学们回答的结果,让学生讨论:我们可以发现自己的数学成绩和物理成绩存在某种关系。(似乎就是数学好的,物理也好;数学差的,物理也差,但又不全对。)教师总结如下:物理成绩和数学成绩是两个变量,从经验看,由于物理学习要用到比较多的数学知识和数学方法。数学成绩的高低对物理成绩的高低是有一定影响的。但决非唯一因素,还有其它因素,如图所示(幻灯片给出):因此,不能通过一个人的数学成绩是多少就准确地断定他的物理成绩能达到多少。但这两个变量是有一定关系的,它们之间是一种不确定性的关系。如何通过数学成绩的结果对物理成绩进行合理估计有非常重要的现实意义。「设计意图」通过对身边事例的分析,引出我们今天将要学习的主要内容,由此可以激起学生们的学习兴趣,为接下来的学习打下良好的基础。㈡探究新知⒈概念形成教师提问:“像刚才这种情况在现实生活中是否还有?”学生们思考之后,请几位同学就提出的问题作出回答。老师就举出的例子,引导学生作出分析,然后由老师总结得出相关关系的概念。[两个变量之间的关系可能是确定的关系(如:函数关系),或非确定性关系。当自变量取值一定时,因变量也确定,则为确定关系;当自变量取值一定时,因变量带有随机性,这种变量之间的关系称为相关关系。相关关系是一种非确定性关系。]「设计意图」从现实生活入手,抓住学生们的注意力,引导学生分析得出概念,让学生真正参与到概念的形成过程中来。⒉探究线性相关关系和其他相关关系「课件展示」例1在一次对人体脂肪和年龄关系的研究中,研究人员获得了一组样本数据:问题:针对于上述数据所提供的信息,你认为人体的脂肪含量与年龄之间有怎样的关系?[教师特别向学生强调在研究两个变量之间是否存在某种关系时,必须从散点图入手(向学生介绍什么是散点图)。并且引导学生从散点图上可以得出如下规律:(幻灯片给出)①如果所有的样本点都落在某一函数曲线上,那么变量之间具有函数关系(确定性关系);②如果所有的样本点都落在某一函数曲线的附近,那么变量之间具有相关关系(不确定性关系);③如果所有的样本点都落在某一直线附近,那么变量之间具有线性相关关系(不确定性关系)。「设计意图」通过对这个典型事例的分析,向学生们介绍什么是散点图,并总结出如何从散点图上判断变量之间关系的规律。下面我们用TI图形计算器作出这两个变量的散点图。学生实验:先把数据中成对出现的两个数分别作为横坐标、纵坐标,把数据输入到表格当中(第一列横坐标、第二列纵坐标);然后,用TI图形计算器作散点图:[引导学生观察作出的散点图,体会现实生活中两个变量之间的关系存在着不确定性。散点图中的散点并不在一条直线上,只是分布在一条直线的周围,即为线性相关关系。]「设计意图」通过实验让学生们感受散点图的主要形成过程,并由此引出线性相关关系。为后面回归直线和回归直线方程的学习做好铺垫。「课件展示」四组数据,请学生作出散点图,并观察每组数据的特点。根据四组数据,学生作出四个散点图。通过学生讨论、交流、用TI图形计算器展示、对比自己作出的散点图,我们引出线性相关关系,正负相关关系的概念。「设计意图」及时巩固知识,学生通过亲自动手作散点图,并交流讨论,进一步加深对散点图的理解,并由此引出正负相关关系的概念,突破难点。㈢例题讲解,深化认识「课件展示」例2一般说来,一个人的身高越高,他的人就越大,相应地,他的右手一拃长就越长,因此,人的身高与右手一拃长之间存在着一定的关系。为了对这个问题进行调查,我们收集了北京市某中学20xx年高三年级96名学生的身高与右手一拃长的数据如下表。(1)根据上表中的数据,制成散点图。你能从散点图中发现身高与右手一拃长之间的近似关系吗?(2)如果近似成线性关系,请画出一条直线来近似地表示这种线性关系。(3)如果一个学生的身高是188cm,你能估计他的一拃大概有多长吗?「设计意图」这个例子很容易激起学生们的学习兴趣,由此可达到更好的教学效果。通过对这道题的解答,使对前面知识的认识更加牢固。㈣反思小结、培养能力⑴变量间相关关系、线性关系和正负相关关系⑵如何做散点图「设计意图」小节是一堂课的概括和总结,有利于优化学生的认知结构,把课堂教学传授的知识较快转化为学生的素质,也更进一步培养学生的归纳概括能力㈤课后作业,自主学习习题2.31、2[设计意图]课后作业的布置是为了检验学生对本节课内容的理解和运用程度,并促使学生进一步巩固和掌握所学内容。高中数学说课稿【第二篇】高三第一阶段复习,也称“知识篇”。在这一阶段,学生重温高一、高二所学课程,全面复习巩固各个知识点,熟练掌握基本方法和技能;然后站在全局的高度,对学过的知识产生全新认识。在高一、高二时,是以知识点为主线索,依次传授讲解的,由于后面的相关知识还没有学到,不能进行纵向联系,所以,学的知识往往是零碎和散乱,而在第一轮复习时,以章节为单位,将那些零碎的、散乱的知识点串联起来,并将他们系统化、综合化,把各个知识点融会贯通。对于普通高中的学生,第一轮复习更为重要,我们希望能做高考试题中一些基础题目,必须侧重基础,加强复习的针对性,讲求实效。一、内容分析说明1、本小节内容是初中学习的多项式乘法的继续,它所研究的二项式的乘方的展开式,与数学的其他部分有密切的联系:(1)二项展开式与多项式乘法有联系,本小节复习可对多项式的变形起到复习深化作用。(2)二项式定理与概率理论中的二项分布有内在联系,利用二项式定理可得到一些组合数的恒等式,因此,本小节复习可加深知识间纵横联系,形成知识网络。(3)二项式定理是解决某些整除性、近似计算等问题的一种方法。2、高考中二项式定理的试题几乎年年有,多数试题的难度与课本习题相当,是容易题和中等难度的试题,考察的题型稳定,通常以选择题或填空题出现,有时也与应用题结合在一起求某些数、式的近似值。二、学校情况与学生分析(1)我校是一所镇普通高中,学生的基础不好,记忆力较差,反应速度慢,普遍感到数学难学。但大部分学生想考大学,主观上有学好数学的愿望。(2)授课班是政治、地理班,学生听课积极性不高,听课率低(60﹪),注意力不能持久,不能连续从事某项数学活动。课堂上喜欢轻松诙谐的气氛,大部分能机械的模仿,部分学生好记笔记。三、教学目标复习课二项式定理计划安排两个课时,本课是第一课时,主要复习二项展开式和通项。根据历年高考对这部分的考查情况,结合学生的特点,设定如下教学目标:1、知识目标:(1)理解并掌握二项式定理,从项数、指数、系数、通项几个特征熟记它的展开式。(2)会运用展开式的通项公式求展开式的特定项。2、能力目标:(1)教给学生怎样记忆数学公式,如何提高记忆的持久性和准确性,从而优化记忆品质。记忆力是一般数学能力,是其它能力的基础。(2)树立由一般到特殊的解决问题的意识,了解解决问题时运用的数学思想方法。3、情感目标:通过对二项式定理的复习,使学生感觉到能掌握数学的部分内容,树立学好数学的信心。有意识地让学生演练一些历年高考试题,使学生体验到成功,在明年的高考中,他们也能得分。四、教学过程1、知识归纳(1)创设情景:①同学们,还记得吗?、、展开式是什么?②学生一起回忆、老师板书。设计意图:①提出比较容易的问题,吸引学生的注意力,组织教学。②为学生能回忆起二项式定理作铺垫:激活记忆,引起联想。(2)二项式定理:①设问展开式是什么?待学生思考后,老师板书=Can+Can-1b1+…+Can-rbr+…+Cbn(n∈N*)②老师要求学生说出二项展开式的特征并熟记公式:共有项;各项里a的指数从n起依次减小1,直到0为止;b的指数从0起依次增加1,直到n为止。每一项里a、b的指数和均为n。③巩固练习填空设计意图:①教给学生记忆的方法,比较分析公式的特点,记规律。②变用公式,熟悉公式。(3)展开式中各项的系数C,C,C,…,称为二项式系数.展开式的通项公式Tr+1=Can-rbr,其中r=0,1,2,…n表示展开式中第r+1项.2、例题讲解例1求的展开式的第4项的二项式系数,并求的第4项的系数。讲解过程设问:这里,要求的第4项的有关系数,如何解决?学生思考计算,回答问题;老师指明①当项数是4时,此时,所以第4项的二项式系数是,②第4项的系数与的第4项的二项式系数区别。板书解:展开式的第4项所以第4项的系数为,二项式系数为。选题意图:①利用通项公式求项的系数和二项式系数;②复习指数幂运算。例2求的展开式中不含的项。讲解过程设问:①不含的项是什么样的项?即这一项具有什么性质?②问题转化为第几项是常数项,谁能看出哪一项是常数项?师生讨论“看不出哪一项是常数项,怎么办?”共同探讨思路:利用通项公式,列出项数的方程,求出项数。老师总结思路:先设第项为不含的项,得,利用这一项的指数是零,得到关于的方程,解出后,代回通项公式,便可得到常数项。板书解:设展开式的第项为不含项,那么令,解得,所以展开式的第9项是不含的项。因此。选题意图:①巩固运用展开式的通项公式求展开式的特定项,形成基本技能。②判断第几项是常数项运用方程的思想;找到这一项的项数后,实现了转化,体现转化的数学思想。例3求的展开式中,的系数。解题思路:原式局部展开后,利用加法原理,可得到展开式中的系数。板书解:由于,则的展开式中的系数为的展开式中的系数之和。而的展开式含的项分别是第5项、第4项和第3项,则的展开式中的系数分别是:。所以的展开式中的系数为例4如果在(+)n的展开式中,前三项系数成等差数列,求展开式中的有理项.解:展开式中前三项的系数分别为1,,由题意得2×=1+,得n=8.设第r+1项为有理项,T=C··x,则r是4的倍数,所以r=0,4,8.有理项为T1=x4,T5=x,T9=.3、课堂练
本文标题:高中数学说课稿(精选4篇)
链接地址:https://www.777doc.com/doc-10128445 .html