您好,欢迎访问三七文档
当前位置:首页 > 办公文档 > 工作范文 > 八年级数学教案(10篇)
八年级数学教案(10篇)八年级数学教案八年级数学教案【第一篇】学习目标(学习重点):1、经历探索菱形的识别方法的过程,在活动中培养探究意识与合作交流的习惯;2、运用菱形的识别方法进行有关推理.补充例题:例1、如图,在△ABC中,AD是△ABC的角平分线。DE∥AC交AB于E,DF∥AB交AC于F.四边形AEDF是菱形吗?说明你的理由.例2、如图,平行四边形ABCD的对角线AC的垂直平分线与边AD、BC分别交于E、F.四边形AFCE是菱形吗?说明理由.例3、如图,ABCD是矩形纸片,翻折B、D,使BC、AD恰好落在AC上,设F、H分别是B、D落在AC上的两点,E、G分别是折痕CE、AG与AB、CD的交点(1)试说明四边形AECG是平行四边形;(2)若AB=4cm,BC=3cm,求线段EF的长;(3)当矩形两边AB、BC具备怎样的关系时,四边形AECG是菱形.课后续助:一、填空题1、如果四边形ABCD是平行四边形,加上条件___________________,就可以是矩形;加上条件_______________________,就可以是菱形2、如图,D、E、F分别是△ABC的边BC、CA、AB上的点,且DE∥BA,DF∥CA(1)要使四边形AFDE是菱形,则要增加条件______________________(2)要使四边形AFDE是矩形,则要增加条件______________________二、解答题1、如图,在□ABCD中,若2,判断□ABCD是矩形还是菱形?并说明理由。2、如图,平行四边形ABCD的两条对角线AC,BD相交于点O,OA=4,OB=3,AB=5.(1)AC,BD互相垂直吗?为什么?(2)四边形ABCD是菱形吗?3、如图,在□ABCD中,已知ADAB,ABC的平分线交AD于E,EF∥AB交BC于F,试问:四边形ABFE是菱形吗?请说明理由。4、如图,把一张矩形的纸ABCD沿对角线BD折叠,使点C落在点E处,BE与AD交于点F.⑴求证:ABF≌⑵若将折叠的图形恢复原状,点F与BC边上的点M正好重合,连接DM,试判断四边形BMDF的形状,并说明理由.八年级数学教案【第二篇】一、学习目标1、多项式除以单项式的运算法则及其应用。2、多项式除以单项式的运算算理。二、重点难点重点:多项式除以单项式的运算法则及其应用。难点:探索多项式与单项式相除的运算法则的过程。三、合作学习(一)回顾单项式除以单项式法则(二)学生动手,探究新课1、计算下列各式:(1)(am+bm)÷m;(2)(a2+ab)÷a;(3)(4x2y+2xy2)÷2xy。2、提问:①说说你是怎样计算的;②还有什么发现吗?(三)总结法则1、多项式除以单项式:先把这个多项式的每一项除以XXXXXXXXXXX,再把所得的商XXXXXX2、本质:把多项式除以单项式转化成XXXXXXXXXXXXXX四、精讲精练例:(1)(12a3—6a2+3a)÷3a;(2)(21x4y3—35x3y2+7x2y2)÷(—7x2y);(3)[(x+y)2—y(2x+y)—8x]÷2x;(4)(—6a3b3+8a2b4+10a2b3+2ab2)÷(—2ab2)。随堂练习:教科书练习。五、小结1、单项式的除法法则2、应用单项式除法法则应注意:A、系数先相除,把所得的结果作为商的系数,运算过程中注意单项式的系数饱含它前面的符号;B、把同底数幂相除,所得结果作为商的因式,由于目前只研究整除的情况,所以被除式中某一字母的指数不小于除式中同一字母的指数;C、被除式单独有的字母及其指数,作为商的一个因式,不要遗漏;D、要注意运算顺序,有乘方要先做乘方,有括号先算括号里的,同级运算从左到右的顺序进行;E、多项式除以单项式法则。八年级数学教案【第三篇】一、学习目标及重、难点:1、了解方差的定义和计算公式。2、理解方差概念的产生和形成的过程。3、会用方差计算公式来比较两组数据的波动大小。重点:方差产生的必要性和应用方差公式解决实际问题。难点:理解方差公式二、自主学习:(一)知识我先懂:方差:设有n个数据,各数据与它们的平均数的差的平方分别是我们用它们的平均数,表示这组数据的方差:即用来表示。给力小贴士:方差越小说明这组数据越。波动性越。(二)自主检测小练习:1、已知一组数据为2、0、-1、3、-4,则这组数据的方差为。2、甲、乙两组数据如下:甲组:1091181213107;乙组:7891011121112、分别计算出这两组数据的极差和方差,并说明哪一组数据波动较小.三、新课讲解:引例:问题:从甲、乙两种农作物中各抽取10株苗,分别测得它的苗高如下:(单位:cm)甲:9、10、10、13、7、13、10、8、11、8;乙:8、13、12、11、10、12、7、7、10、10;问:(1)哪种农作物的苗长的比较高(我们可以计算它们的平均数:=)(2)哪种农作物的苗长得比较整齐?(我们可以计算它们的极差,你发现了)归纳:方差:设有n个数据,各数据与它们的平均数的差的平方分别是我们用它们的平均数,表示这组数据的方差:即用来表示。(一)例题讲解:例1、段巍和金志强两人参加体育项目训练,近期的5次测试成绩如下表所示,谁的成绩比较稳定?为什么?、测试次数第1次第2次第3次第4次第5次段巍1314131213金志强1013161412给力提示:先求平均数,在利用公式求解方差。(二)小试身手1、.甲、乙两名学生在相同的条件下各射靶10次,命中的环数如下:甲:7、8、6、8、6、5、9、10、7、4乙:9、5、7、8、7、6、8、6、7、7经过计算,两人射击环数的平均数是,但S=,S=,则SS,所以确定去参加比赛。1、求下列数据的众数:(1)3,2,5,3,1,2,3(2)5,2,1,5,3,5,2,22、8年级一班46个同学中,13岁的有5人,14岁的有20人,15岁的15人,16岁的6人。8年级一班学生年龄的平均数,中位数,众数分别是多少?四、课堂小结方差公式:给力提示:方差越小说明这组数据越。波动性越。每课一首诗:求方差,有公式;先平均,再求差;求平方,再平均;所得数,是方差。五、课堂检测:1、小爽和小兵在10次百米跑步练习中成绩如表所示:(单位:秒)小爽10.810.911、010.711、111、110.811、010.710.9小兵10.910.910.810.811、010.910.811、110.910.8如果根据这几次成绩选拔一人参加比赛,你会选谁呢?六、课后作业:必做题:教材141页练习1、2选做题:练习册对应部分习题七、学习小札记:写下你的收获,交流你的经验,分享你的成果,你会感到无比的快乐!八年级数学教案【第四篇】教学目标:知识目标:1、初步掌握函数概念,能判断两个变量间的关系是否可看作函数。2、根据两个变量间的关系式,给定其中一个量,相应地会求出另一个量的值。3、会对一个具体实例进行概括抽象成为数学问题。能力目标:1、通过函数概念,初步形成学生利用函数的观点认识现实世界的意识和能力。2、经历具体实例的抽象概括过程,进一步发展学生的抽象思维能力。情感目标:1、经历函数概念的抽象概括过程,体会函数的模型思想。2、让学生主动地从事观察、操作、交流、归纳等探索活动,形成自己对数学知识的理解和有效的学习模式。教学重点:掌握函数概念。判断两个变量之间的关系是否可看作函数。能把实际问题抽象概括为函数问题。教学难点:理解函数的概念。能把实际问题抽象概括为函数问题。教学过程设计:一、创设问题情境,导入新课『师』:同学们,你们看下图上面那个像车轮状的物体是什么?『生』:摩天轮。『师』:你们坐过吗?……『师』:当你坐在摩天轮上时,人的高度随时在变化,那么变化是否有规律呢?『生』:应该有规律。因为人随轮一直做圆周运动。所以人的高度过一段时间就会重复依次,即转动一圈高度就重复一次。『师』:分析有道理。摩天轮上一点的高度h与旋转时间t之间有一定的关系。请看下图,反映了旋转时间t(分)与摩天轮上一点的高度h(米)之间的关系。大家从图上可以看出,每过6分钟摩天轮就转一圈。高度h完整地变化一次。而且从图中大致可以判断给定的时间所对应的高度h。下面根据图5-1进行填表:t/分012345……h/米t/分012345……h/米31137453711……『师』:对于给定的时间t,相应的高度h确定吗?『生』:确定。『师』:在这个问题中,我们研究的对象有几个?分别是什么?『生』:研究的对象有两个,是时间t和高度h。『师』:生活中充满着许许多多变化的量,你了解这些变量之间的关系吗?如:弹簧的长度与所挂物体的质量,路程的距离与所用时间……了解这些关系,可以帮助我们更好地认识世界。下面我们就去研究一些有关变量的问题。二、新课学习做一做(1)瓶子或罐子盒等圆柱形的物体,常常如下图那样堆放,随着层数的增加,物体的总数是如何变化的?填写下表:层数n12345…物体总数y1361015…『师』:在这个问题中的变量有几个?分别师什么?『生』:变量有两个,是层数与圆圈总数。(2)在平整的路面上,某型号汽车紧急刹车后仍将滑行S米,一般地有经验公式,其中V表示刹车前汽车的速度(单位:千米/时)①计算当fenbie为50,60,100时,相应的滑行距离S是多少?②给定一个V值,你能求出相应的S值吗?解:略议一议『师』:在上面我们研究了三个问题。下面大家探讨一下,在这三个问题中的共同点是什么?不同点又是什么?『生』:相同点是:这三个问题中都研究了两个变量。不同点是:在第一个问题中,是以图象的形式表示两个变量之间的关系;第二个问题中是以表格的形式表示两个变量间的关系;第三个问题是以关系式来表示两个变量间的关系的。『师』:通过对这三个问题的研究,明确“给定其中某一个变量的值,相应地就确定了另一个变量的值”这一共性。函数的概念在上面各例中,都有两个变量,给定其中某一各变量(自变量)的值,相应地就确定另一个变量(因变量)的值。一般地,在某个变化过程中,有两个变量x和y,如果给定一个x值,相应地就确定了一个y值,那么我们称y是x的函数,其中x是自变量,y是因变量。三、随堂练习书P152页随堂练习1、2、3四、本课小结初步掌握函数的概念,能判断两个变量间的关系是否可看作函数。在一个函数关系式中,能识别自变量与因变量,给定自变量的值,相应地会求出函数的值。函数的三种表达式:(1)图象;(2)表格;(3)关系式。五、探究活动为了加强公民的节水意识,某市制定了如下用水收费标准:每户每月的用水不超过10吨时,水价为每吨1、2元;超过10吨时,超过的部分按每吨1、8元收费,该市某户居民5月份用水x吨(x10),应交水费y元,请用方程的知识来求有关x和y的关系式,并判断其中一个变量是否为另一个变量的函数?(答案:Y=1、8x-6或)六、课后作业习题6.1八年级数学教案【第五篇】一、教学目标:1、了解方差的定义和计算公式。2、理解方差概念的产生和形成的过程。3、会用方差计算公式来比较两组数据的波动大小。二、重点、难点和难点的突破方法:1、重点:方差产生的必要性和应用方差公式解决实际问题。2、难点:理解方差公式3、难点的突破方法:方差公式:S=[(-)+(-)+…+(-)]比较复杂,学生理解和记忆这个公式都会有一定困难,以致应用时常常出现计算的错误,为突破这一难点,我安排了几个环节,将难点化解。(1)首先应使学生知道为什么要学习方差和方差公式,目的不明确学生很难对本节课内容产生兴趣和求知欲望。教师在授课过程中可以多举几个生活中的小例子,不如选择仪仗队队员、选择运动员、选择质量稳定的电器等。学生从中可以体会到生活中为了更好的做出选择判断经常要去了解一组数据的波动程度,仅仅知道平均数是不够的。(2)波动性可以通过什么方式表现出来?第一环节中点明了为什么去了解数据的波动性,第二环节则主要使学生知道描述数据,波动性的方法。可以画折线图方法来反映这种波动大小,可是当波动大小区别不大时,仅用画折线图方法去描述恐怕不会准确,这自然希望可以出现一种数量来描述数据波动大小,这就引出方差产生的
本文标题:八年级数学教案(10篇)
链接地址:https://www.777doc.com/doc-10228540 .html