您好,欢迎访问三七文档
当前位置:首页 > 办公文档 > 工作范文 > 小学数学优秀教学设计【最新4篇】
小学数学优秀教学设计【最新4篇】【导读】这篇文档“小学数学优秀教学设计【最新4篇】”由三一刀客最漂亮的网友为您分享整理,希望这篇范文对您有所帮助,喜欢就下载吧!小数除以整数___小学数学_优秀教案设计【第一篇】小数除以整数一、教学目标1.理解小数除以整数的算理,掌握除数是整数的小数除法的计算方法,能正确计算。2.在探索小数除以整数计算方法的过程中,培养学生的类推能力、分析能力和抽象概括能力。3.感受数学在生活中的价值,培养学生认真检查的习惯。二、教学重点理解小数除以整数的算理,掌握小数除以整数的计算方法。三、教学难点理解商的小数点定位问题四、教学具准备课件五、教学过程一、创设情境,引入课题1.复习:268÷4224÷4252÷6345÷15师生活动:学生独立完成,完成后集体订正,任选一题说一说怎样算的。3.创设情境:情境:出示例1的情景图。问题:他计划4周跑步22.4千米,平均每周应跑多少千米?师生活动:引导学生观察图并说图意,并板书:22.4÷44.观察算式,揭示课题问题:这里的除法和前面学的除法比,有什么不同呢?归纳:这就是我们这节课要研究的课题,小数除以整数。(板书课题:除数是整数的除法)二、探索讨论,学习新知1,渗透估算,初探算理2.小组讨论,体验算法多样化教师提问:想一想,被除数是小数该怎么除呢?师生活动:小组讨论,并交流汇报3.交流汇报,优化算法方案预设:(1)22.4千米=22400米22400÷4=5600米5600米=5.6千米(2)还可以列竖式计算。问题:你喜欢哪种算法?为什么?4.深入研究,明确算理。追问:6前面为什么要点上小数点?师生活动:学生交流,教师归纳板书:(1)先用4去除22.4的整数部分,商5,写再商的个位,余数是2;(2)把2化成20个十分之一,并与被除数中原来十分位上的4合并在一起是24个十分之一(3)继续除,4除24个十分之一,商是6个十分之一,6要写在十分位上,所以要在6的前面点上小数点。三、观察比较,明确算法问题:请观察这个竖式中的被除数的小数点和上的小数点,你发现了什么?问题:小数除法和整数除法的有什么相同点和不同点?师生活动:引导学生明确:(1)相同点:除数是整数的小数除法和整数除法的计算步骤基本相同,(2)不同点:不同的只是商的小数点要和被除数的小数点对齐。四、解决问题,强化算法五、总结全课,延伸算法初中数学教案设计优秀【第二篇】初中数学教案设计优秀模板导语:我们时常在数学的奇妙天地中去体味数学,学习数学,开垦数学。以下是品才整理的,欢迎阅读参考。一教学建议知识结构重难点分析本节的重点是中位线定理.三角形中位线定理和梯形中位线定理不但给出了三角形或梯形中线段的位置关系,而且给出了线段的数量关系,为平面几何中证明线段平行和线段相等提供了新的思路.本节的难点是中位线定理的证明.中位线定理的证明教材中采用了同一法,同一法学生初次接触,思维上不容易理解,而其他证明方法都需要添加2条或2条以上的辅助线,添加的目的性和必要性,同以前遇到的情况对比有一定的难度.教法建议1.对于中位线定理的引入和证明可采用发现法,由学生自己观察、猜想、测量、论证,实际掌握效果比应用讲授法应好些,教师可根据学生情况参考采用2.对于定理的证明,有条件的教师可考虑利用多媒体课件来进行演示知识的形成及证明过程,效果可能会更直接更易于理解教学设计示例一、教学目标1.掌握梯形中位线的概念和梯形中位线定理2.掌握定理“过梯形一腰中点且平行底的直线平分另一腰”3.能够应用梯形中位线概念及定理进行有关的论证和计算,进一步提高学生的计算能力和分析能力4.通过定理证明及一题多解,逐步培养学生的分析问题和解决问题的能力5.通过一题多解,培养学生对数学的兴趣二、教学设计引导分析、类比探索,讨论式三、重点和难点1.教学重点:梯形中位线性质及不规则的多边形面积的计算.2.教学难点:梯形中位线定理的证明.四、课时安排1课时五、教具学具准备投影仪、胶片,常用画图工具六、教学步骤复习提问1.什么叫三角形的中位线?它与三角形中线有什么区别?三角形中位线又有什么性质(叙述定理).2.叙述平行线等分线段定理及推论1、推论2(学生叙述,教师画草图,如图所示,结合图形复习).(由线段EF引入梯形中位线定义)引入新课梯形中位线定义:连结梯形两腰中点的线段叫梯形的中位线.现在我们来研究梯形中位线有什么性质.如图所示:EF是的中位线,引导学生回答下列问题:(1)EF与BC有什么关系?()(2)如果那么DF与FC,AD与GC是否相等?为什么?(3)EF与AD、BG有何关系?教师用彩色粉笔描出梯形ABGD,则EF为梯形ABGD的中位线.由此得出梯形中位线定理:梯形的中位线平行于两底,并且等于两底和的一半.现在我们来证明这个定理(结合上面提出的问题,让学生计论证明方法,教师总结).已知:如图所示,在梯形ABCD中。.求证:.分析:把EF转化为三角形中位线,然后利用三角形中位线定理即可证得.说明:延长BC到E,使或连结AN并延长AN到E,使这两种方法都需证三点共线(A、N、E或B、C、E)较麻烦,所以可连结AN并延长,交BC线于点E,这样只需证即可得从而证出定理结论.证明:连结AN并交BC延长线于点E.又∴MN是中位线.∴(三角形中位线定理).复习小学学过的梯形面积公式.(其中a、b表示两底,h表示高)因为梯形中位线所以有下面公式:例题:如图所示,有一块四边形的地ABCD,测得顶点B、C到AD的距离分别为10m、4m,求这块地的面积.分析:这是一个不规则的多边形面积计算问题,我们可以采取作适当的辅助线把它分割成三角形、平行四边形或梯形,然后利用这些较熟悉的面积公式来计算任意多边形的面积.解:答:这块地的面积是182.说明:在几何有关计算中,常常需要用代数知识,如列方程求未知量;在列方程时又需要根据几何中的定理,提醒学生注意数形结合这种解决问题的方法.小结以回答问题的方式让学生总结)(1)什么叫梯形中位线?梯形有几条中位线?(2)梯形中位线有什么性质?(3)梯形中位线定理的特点是什么?(同一个题没下有两个结论,一是中位线与底的位置关系;二是中位线与底的数量关系).(4)怎样计算梯形面积?怎样计算任意多边形面积?(用投影仪)学过梯形、三角形中位线概念后,可以把平行线等分线段定理的两个推论,分别看成是梯形、三角形中位线的判定定理.七、布置作业教材P188中8、P189中10、11.B组2(选做)九、板书设计二教学建议一、知识结构二、重点、难点分析本节的重点是:单项式乘法法则的导出.这是因为单项式乘法法则的导出是对学生已有的数学知识的综合运用,渗透了“将未知转化为已知”的数学思想,蕴含着“从特殊到一般”的认识规律,是培养学生思维能力的重要内容之一.本节的难点是:多种运算法则的综合运用.是因为单项式的乘法最终将转化为有理数乘法、同底数幂相乘、幂的乘方、积的乘方等运算,对于初学者来说,由于难于正确辩论和区别各种不同的运算以及运算所使用的法则,易于将各种法则混淆,造成运算结果的错误.三、教法建议本节课在教学过程中的不同阶段可以采用了不同的教学方法,以适应教学的需要.(1)在新课学习阶段的单项式的乘法法则的推导过程中,可采用引导发现法.通过教师精心设计的问题链,引导学生将需要解决的问题转化成用已经学过的知识可以解决的问题,充分体现了教师的主导作用和学生的主体作用,学生始终处在观察思考之中.(2)在新课学习的例题讲解阶段,可采用讲练结合法.对于例题的学习,应围绕问题进行,教师引导学生通过观察、思考,寻求解决问题的方法,在解题的过程中展开思维.与此同时还进行多次有较强针对性的练习,分散难点.对学生分层进行训练,化解难点.并注意及时矫正,使学生在前面出现的错误,不致于影响后面的学习,为后而后学习扫清障碍.通过例题的讲解,教师给出了解题规范,并注意对学生良好学习习惯的培养.(3)本节课可以师生共同小结,旨在训练学生归纳的方法,并形成相应的知识系统,进一步防范学生在运算中容易出现的错误.教学设计示例一、教学目的1.使学生理解并掌握单项式的乘法法则,能够熟练地进行单项式的乘法计算.2.注意培养学生归纳、概括能力,以及运算能力.3.通过单项式的乘法法则在生活中的应用培养学生的应用意识.二、重点、难点重点:掌握单项式与单项式相乘的法则.难点:分清单项式与单项式相乘中,幂的运算法则.三、教学过程复习提问:什么是单项式?什么叫单项式的系数?什么叫单项式的次数?引言我们已经学习了幂的运算性质,在这个基础上我们可以学习整式的乘法运算.先来学最简单的整式乘法,即单项式之间的乘法运算(给出标题).新课看下面的例子:计算(1)2x2y·3xy2;(2)4a2x2·(-3a3bx).同学们按以下提问,回答问题:(1)2x2y·3xy2①每个单项式是由几个因式构成的,这些因式都是什么?2x2y·3xy2=(2·x2·y)·(3·x·y2)②根据乘法结合律重新组合2x2y·3xy2=2·x2·y·3·x·y2③根据乘法交换律变更因式的位置2x2y·3xy2=2·3·x2·x·y·y2④根据乘法结合律重新组合2x2y·3xy2=(2·3)·(x2·x)·(y·y2)⑤根据有理数乘法和同底数幂的乘法法则得出结论2x2y·3xy2=6x3y3按以上的分析,写出(2)的计算步骤:(2)4a2x2·(-3a3bx)=4a2x2·(-3)a3bx=·(a2·a3)·(x2·x)·b=(-12)·a5·x3·b=-12a5bx3.通过以上两题,让学生总结回答,归纳出单项式乘单项式的运算步骤是:①系数相乘为积的系数;②相同字母因式,利用同底数幂的乘法相乘,作为积的因式;③只在一个单项式里含有的字母,连同它的指数也作为积的一个因式;④单项式与单项式相乘,积仍是一个单项式;⑤单项式乘法法则,对于三个以上的单项式相乘也适用.看教材,让学生仔细阅读单项式与单项式相乘的法则,边读边体会边记忆.利用法则计算以下各题.例1计算以下各题:(1)4n2·5n3;(2)(-5a2b3)·(-3a);(3)(-5an+1b)·(-2a);(4)(4×105)·(5×106)·(3×104).解:(1)4n2·5n3=(4·5)·(n2·n3)=20n5;(2)(-5a2b3)·(-3a)=·(a2·a)·b3=15a3b3;(3)(-5an+1b)·(-2a)=·(an+1·a)b=10an+2b;(4)(4·105)·(5·106)·(3·104)=(4·5·3)·(105·106·104)=60·1015=6·1016.例2计算以下各题(让学生回答):(3)(-5amb)·(-2b2);(4)(-3ab)(-a2c)·6ab2.=3x3y3;(3)(-5amb)·(-2b2);=·am·(b·b2)=10amb3(4)(-3ab)·(-a2c)·6ab2=·(aa2a)·(bb2)·c=18a4b3c.小结单项式与单项式相乘是整式乘法中的重要内容,它的运算法则的导出主要依据是,乘法的交换律与结合律以及幂的运算性质.三1、教材分析(1)知识结构(2)重点、难点分析重点:三角形内切圆的概念及内心的性质.因为它是三角形的重要概念之一.难点:①难点是“接”与“切”的含义,学生容易混淆;②画三角形内切圆,学生不易画好.2、教学建议本节内容需要一个课时.(1)在教学中,组织学生自己画图、类比、分析、深刻理解三角形内切圆的概念及内心的性质;(2)在教学中,类比“三角形外接圆的画图、概念、性质”,开展活动式教学.教学目标:1、使学生了解尺规作三角形的内切圆的方法,理解三角形和多边形的内切圆、圆的外切三角形和圆的外切多边形、三角形内心的概念;2、应用类比的数学思想方法研究内切圆,逐步培养学生的研究问题能力;3、激发学生动手、动脑主动参与课堂教学活动.教学重点:三角形内切圆的作法和三角形的内心与性质.教学难点:三角形内切圆的作法和三角形的内心与性质.教学活动设计(一)提出问题1、提出问题:如图,你能否在△ABC中画出一个圆?画出一个最大的圆?想一想,怎样
本文标题:小学数学优秀教学设计【最新4篇】
链接地址:https://www.777doc.com/doc-10346171 .html