您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 20202021学年沈阳市铁西区考试八年级上学期期末数学试卷解析
2020-2021学年沈阳市铁西区八年级上学期期末数学试卷一、选择题(下列各题的四个选项中,只有一个是正确的,请将正确答案写在答题卡上,每小题3分,共24分)1.下列各数中,是无理数的是()A.B.C.D.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.据此解答即可.【解答】解:A、=2,2是整数,属于有理数,故此选项不符合题意;B、=2,2是整数,属于有理数,故此选项不符合题意;C、是分数,属于有理数,故此选项不符合题意;D、属于无理数,故此选项符合题意.故选:D.2.某校八年级进行了三次数学测试,甲、乙、丙、丁4名同学三次数学成绩的平均分都是109分,方差分别是s甲2=3.6,s乙2=4.6,s丙2=6.3,s丁2=7.3,则这4名同学三次数学成绩最稳定的是()A.甲B.乙C.丙D.丁【分析】利用方差的意义求解即可.【解答】解:∵s甲2=3.6,s乙2=46,s丙2=6.3,s丁2=7.3,∴s甲2<s丙2<s丁2<s乙2,∴这4名同学三次数学成绩最稳定的是甲,故选:A.3.若点P是平面直角坐标系中第二象限内的点,且点P到x轴的距离是2,到y轴的距离是3,则点P的坐标是()A.(﹣2,3)B.(2,﹣3)C.(﹣3,2)D.(3,﹣2)【分析】根据第二象限内点的特点及点到坐标轴的距离定义,即可判断出点P的坐标.【解答】解:点P到x轴的距离是2,则点P的纵坐标为±2,点P到y轴的距离是3,则点P的纵坐标为±3,由于点P在第二象限,故P坐标为(﹣3,2),故选:C.4.如图,AB⊥AE于点A,AB∥CD,∠CAE=42°,则∠ACD=()A.112°B.122°C.132°D.142°【分析】直接利用平行线的性质结合垂直定义得出∠BAC度数以及∠ACD的度数.【解答】解:∵AB⊥AE,∠CAE=42°,∴∠BAC=90°﹣42°=48°,∵AB∥CD,∴∠BAC+∠ACD=180°,∴∠ACD=132°.故选:C.5.某手表厂抽查了10只手表的日走时误差,数据如下表所示:则这10只手表的平均日走时误差(单位:秒)是()日走时误差(秒)0123只数(只)3421A.0B.0.6C.0.8D.1.1【分析】利用加权平均数的定义求解即可.【解答】解:这10只手表的平均日走时误差是=1.1(秒),故选:D.6.已知直线y=2x与y=﹣x+b的交点的坐标为(1,a),则方程组的解是()A.B.C.D.【分析】方程组的解是一次函数的交点坐标即可.【解答】解:∵直线y=2x经过(1,a)∴a=2,∴交点坐标为(1,2),∵方程组的解就是两个一次函数的交点坐标,∴方程组的解,故选:A.7.对于一次函数y=﹣2x+4,下列结论错误的是()A.函数值随自变量的增大而减小B.函数的图象不经过第三象限C.函数的图象向下平移4个单位长度得y=﹣2x的图象D.函数的图象与x轴的交点坐标是(0,4)【分析】分别根据一次函数的性质及函数图象平移的法则进行解答即可.【解答】解:A、因为一次函数y=﹣2x+4中k=﹣2<0,因此函数值随x的增大而减小,故A选项正确;B、因为一次函数y=﹣2x+4中k=﹣2<0,b=4>0,因此此函数的图象经过一、二、四象限,不经过第三象限,故B选项正确;C、由“上加下减”的原则可知,函数的图象向下平移4个单位长度得y=﹣2x的图象,故C选项正确;D、令y=0,则x=2,因此函数的图象与x轴的交点坐标是(2,0),故D选项错误.故选:D.8.如图,在3×3的网格中,每个小正方形的边长均为1,点A,B,C都在格点上,若BD是△ABC的高,则BD的长为()A.B.C.D.【分析】根据勾股定理计算AC的长,利用面积差可得三角形ABC的面积,由三角形的面积公式即可得到结论.【解答】解:由勾股定理得:AC==,∵S△ABC=3×3﹣=3.5,∴,∴,∴BD=,故选:D.二、填空题(每小题4分,共20分)9.(4分)16的算术平方根是4.【分析】根据算术平方根的定义即可求出结果.【解答】解:∵42=16,∴=4.故答案为:4.10.(4分)如图,在四边形ABDC中,CD∥AB,AC⊥BC于点C,若∠A=40°,则∠DCB的度数为50°.【分析】根据平行线的性质定理,垂线的定义,三角形的内角和定理即可得到结论.【解答】解:∵AC⊥BC,∴∠ACB=90°,∵CD∥AB,∴∠ACD+∠A=180°,即∠ACB+∠DCB+∠A=180°,∵∠A=40°,∴∠DCB=180°﹣∠ACB﹣∠A=180°﹣90°﹣40°=50°.故答案为:50.11.(4分)祖冲之是我国著名的数学家,他把圆周率精确到小数点后7位,这是祖冲之最重要的数学贡献.随着科技的不断发展,人们开始使用计算机来计算圆周率的小数位.数学杨老师对圆周率的小数点后100位数字进行了如下统计:数字0123456789频数881211108981214那么,圆周率的小数点后100位数字的众数为9.【分析】直接根据众数的定义可得答案.【解答】解:圆周率的小数点后100位数字的众数为9.故答案为:9.12.(4分)点P(a,b)在函数y=3x+2的图象上,则代数式3a﹣b+1的值等于﹣1.【分析】把P(a,b)代入一次函数解析式得到b=3a+2,然后把b=3a+2代入3a﹣b+1后进行整式的加减运算即可.【解答】解:∵点P(a,b)在函数y=3x+2的图象上,∴b=3a+2,∴3a﹣b+1=3a﹣(3a+2)+1=3a﹣3a﹣2+1=﹣1.故答案为﹣1.13.(4分)如图,等边△ABC中,AB=BC=AC=5,点M是BC边上的高AD所在直线上的点,以BM为边作等边△BMN,连接DN,则DN的最小值为.【分析】连接CN,由“SAS”可证△ABM≌△CBN,可得AM=CN,∠BAD=∠BCN=30°,则点N在与BC成30度的射线CN上运动,当DN⊥CN时,DN有最小值,由直角三角形的性质可求解.【解答】解:如图,连接CN,∵△ABC和△BMN是等边三角形,∴AB=BC,BM=BN,∠ABC=∠MBN=60°,∴∠ABM=∠CBN,∵AD⊥BC,∴∠BAD=∠CAD=30°,BD=CD=,在△ABM和△CBN中,,∴△ABM≌△CBN(SAS),∴AM=CN,∠BAD=∠BCN=30°,∴点N在与BC成30度的射线CN上运动,∴当DN⊥CN时,DN有最小值,∵DN⊥CN,∠BCN=30°,∴DN=CD=,故答案为.三.(本题10分)14.(10分)如图,直线AB∥CD,AE平分∠CAB交CD于点E,若∠C=50°,求∠AED的度数.【分析】根据平行线的性质得出∠BAE+∠AED=180°,∠BAC+∠C=180°,求出∠BAC,根据角平分线的定义求出∠BAE,再求出答案即可.【解答】解:∵AB∥CD,∴∠BAE+∠AED=180°,∠BAC+∠C=180°,∵∠C=50°,∴∠BAC=130°,∵AE平分∠BAC,∴∠BAE=BAC=65°,∴∠AED=180°﹣∠BAE=115°.四、(本题10分)15.(10分)从地面竖直向上抛射一个小球,在落地之前,物体向上的速度v(m/s)是运动时间t(s)的一次函数.经测量,该物体的初始速度(t=0时物体的速度)为25m/s,经过2s物体的速度为5m/s.(1)请你求出v与t之间的函数关系式;(2)经过多长时间,物体将达到最高点?(此时物体的速度为0)【分析】(1)设v与t之间的函数关系式为v=kt+b,由待定系数法求出其解就可以得出结论;(2)根据(1)的一次函数的解析式的性质就可以求出结论.【解答】解:(1)设v与t之间的函数关系式为v=kt+b,由题意,得,解得:.故v与t之间的函数关系式为v=﹣10t+25.(2)物体达到最高点,说明物体向上的速度为0,则0=﹣10t+25,解得t=2.5.答:经过2.5秒,物体将达到最高点.五、(本题10分)16.(10分)列二元一次方程组解应用题:小颖家离学校1880米,其中有一段为上坡路,另一段为下坡路.她跑步去学校共用了16分钟,已知小颖在上坡路上的平均速度是80米/分钟,在下坡路上的平均速度是200米/分钟.求小颖上坡、下坡各用了多长时间?【分析】设小颖上坡用了x分钟,下坡用了y分钟,根据“小颖家离学校1880米,且去学校共用了16分钟”,即可得出关于x,y的二元一次方程组,解之即可得出结论.【解答】解:设小颖上坡用了x分钟,下坡用了y分钟,依题意得:,解得:.答:小颖上坡用了11分钟,下坡用了5分钟.六、(本题12分)17.(12分)为进一步提高学生学习数学的兴趣,某校开展了一次数学趣味知识竞赛,并随机抽取了50名学生的竞赛成绩(竞赛成绩为百分制,本次竞赛没有满分),经过整理数据得到以下信息:信息一:50名学生竞赛成绩频数分布直方图如图所示,从左到右依次为第一组到第五组(每组数据含左端点值,不含右端点值).信息二:第三组的成绩(单位:分)为747173747976777676737275根据信息解答下列问题:(1)第二组的学生人数是10人;(2)第三组竞赛成绩的众数是76分,抽取的50名学生竞赛成绩的中位数是78分;(3)若该校共有1500名学生参赛,请估计该校参赛学生成绩不低于80分的有多少人?【分析】(1)根据各组数据的和为50可求出第二组的学生数;(2)根据众数、中位数的意义求解即可;(3)样本中成绩不低于80分的占调查人数的,因此估计总体1500人的是成绩不低于80分的人数.【解答】解:(1)50﹣4﹣12﹣20﹣4=10(人),故答案为:10;(2)第三组学生竞赛成绩出现次数最多的是76,因此众数是76,将50名学生的竞赛成绩从小到大排列后,处在中间位置的两个数的平均数为=78,因此中位数是78,故答案为:76,78;(3)1500×=720(人),答:该校1500名参赛学生成绩不低于80分的大约有720人.七、(本题14分)18.(14分)在Rt△ABC中,∠ACB=90°,CB=CA=2,点D是射线AB上一点,连接CD,在CD右侧作∠DCE=90°,且CE=CD,连接AE,已知AE=1.(1)如图,当点D在线段AB上时,①求∠CAE的度数;②求CD的长;(2)当点D在线段AB的延长线上时,请直接写出∠CAE的度数和CD的长.【分析】(1)①证明△BCD≌△ACE得∠CAF=∠B,再根据等腰直角三角形的性质便可得结果;②连接DE,证明∠DAE=90°,由勾股定理求得DE,再解Rt△CDE得CD的长度;(2)证明△BCD≌△ACE得∠CAF=∠CBD,再根据等腰直角三角形的性质和勾股定理便可得结果.【解答】解:(1)①∵∠ACB=90°,∠DCE=90°,∴∠ACB﹣∠ACD=∠DCE﹣∠ACD,∴∠BCD=∠ACE,在△BCD和△ACE中,,∴△BCD≌△ACE(SAS),∴∠B=∠CAE,∵∠ACB=90°,AC=BC,∴∠B=45°,∴∠CAE=45°;②连接DE,如图1,∵∠ACB=90°,AC=BC,CB=CA=2,∴∠B=∠BAC=45°,AB=,∵△BCD≌△ACE,∴∠B=∠CAE=45°,BD=AE=1,∴∠DAE=90°,AD=AB﹣BD=3,∴DE=,∵∠DCE=90°,且CE=CD,∴∠CDE=45°,∴CD=DE•cos45°=;(2)∠CAE=135°,CD=.根据题意作出图形,连接DE,如图2,∵∠ACB=90°,∠DCE=90°,∴∠ACB﹣∠BCE=∠DCE﹣∠BCE,∴∠BCD=∠ACE,在△BCD和△ACE中,,∴△BCD≌△ACE(SAS),∴∠CBD=∠CAE,BD=AE=1,∵∠ACB=90°,CB=CA=2,∴AB=,∠ABC=∠BAC=45°,∴∠CAE=∠CBD=180°﹣∠ABC=135°,AD=AB+BD=4+1=5,∴∠DAE=∠CAE﹣∠CAB=135°﹣45°=90°,∴DE=,∵∠DCE=90°,且CE
本文标题:20202021学年沈阳市铁西区考试八年级上学期期末数学试卷解析
链接地址:https://www.777doc.com/doc-10426892 .html