您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 20192020学年沈阳市沈河区八年级上学期期末数学试题
试卷第1页,总6页2019-2020学年沈阳市沈河区八年级上学期期末数学试题一、单选题1.下列四个数中,是无理数的是()A.2B.227C.38D.232.满足下列条件的不是直角三角形的是()A.三边之比为1:2:3B.三边之比1:2:3C.三个内角之比1:2:3D.三个内角之比3:4:53.下列运算正确的是()A.42B.2(5)5C.2(7)7D.2(3)34.如果点P,3m在第二象限,那么点Q3,m在()A.第一象限B.第二象限C.第三象限D.第四象限5.某校有25名同学参加某比赛,预赛成绩各不相同,取前13名参加决赛,其中一名同学已经知道自己的成绩,能否进入决赛,只需要再知道这25名同学成绩的()A.最高分B.中位数C.方差D.平均数6.估计56﹣24的值应在()A.5和6之间B.6和7之间C.7和8之间D.8和9之间7.在平面直角坐标系中,一次函数y=kx﹣6(k<0)的图象大致是()A.B.C.D.8.如图,在△ABC中,∠C=90°,点D在AC上,DE∥AB,若∠CDE=165°,则∠B的度数为()A.15°B.55°C.65°D.75°9.某班有若干个活动小组,其中书法小组人数的3倍比绘画小组的人数多15人,绘画小组人数的2倍比书法小组的人数多5人,问:书法小组和绘画小组各有多少人?若设书法小组有x人,绘画小组有y人,那么可列方程组为()试卷第2页,总6页A.31525yxxyB.31525yxyxC.31525xyxyD.31525xyyx10.在直线L上依次摆放着七个正方形,已知斜放置的三个正方形的面积分别为1、2、3,正放置的四个正方形的面积依次是S1、S2、S3、S4,则S1+2S2+2S3+S4=()A.5B.4C.6D.10二、填空题11.计算:16=_______.12.如图,在直角坐标系中有两条直线,l1:y=x+1和L2:y=ax+b,这两条直线交于轴上的点(0,1)那么方程组1yxyaxb的解是_____.13.将长为20cm、宽为8cm的长方形白纸,按如图所示的方法粘合起来,粘合部分的宽为3cm,设x张白纸粘合后的总长度为ycm,y与x之间的关系式为_______.14.如图,在一个长为8cm,宽为5cm的长方形草地上,放着一根长方体的木块,它的棱和草地宽AD平行且棱长大于AD,木块从正面看是边长为2cm的正方形,一只蚂蚁从点A处到达点C处需要走的最短路程是_____.15.∠A=65º,∠B=75º,将纸片一角折叠,使点C落在△ABC外,若∠2=20º,则∠1的度数为_______.试卷第3页,总6页16.在平面直角坐标系中,点A的坐标是(4,0),点P在直线y=﹣x+m上,且AP=OP=4,则m的值为_____.三、解答题17.计算:(1)23(5)2227(2)(1﹣23)(1+23)﹣(3﹣1)218.解方程组:(1)12232xyxy(2)32(1)11343xyxy19.如图,在四边形ACBD中,AC=6,BC=8,AD=25,BD=45,DE是△ABD的边AB上的高,且DE=4,求△ABC的边AB上的高.20.射击训练班中的甲、乙两名选手在5次射击训练中的成绩依次为(单位:环):甲:8,8,7,8,9乙:5,9,7,10,9教练根据他们的成绩绘制了如下尚不完整的统计图表:选手平均数众数中位数方差甲8b80.4乙α9c3.2试卷第4页,总6页根据以上信息,请解答下面的问题:(1)α=,b=,c=;(2)完成图中表示乙成绩变化情况的折线;(3)教练根据这5次成绩,决定选择甲参加射击比赛,教练的理由是什么?(4)若选手乙再射击第6次,命中的成绩是8环,则选手乙这6次射击成绩的方差与前5次射击成绩的方差相比会.(填“变大”、“变小”或“不变”)21.在如图的正方形网格中,每一个小正方形的边长为1;格点三角形ABC(顶点是网格线交点的三角形)的顶点A、C的坐标分别是(-4,6)、(-1,4);(1)请在图中的网格平面内建立平面直角坐标系;(2)请画出△ABC关于x轴对称的△A1B1C1;(3)请在y轴上求作一点P,使△PB1C的周长最小,并直接写出点P的坐标.22.某城市为创建国家卫生城市,需要购买甲、乙两种类型的分类垃圾桶(如图所示),据调查该城市的A、B、C三个社区积极响应号并购买,具体购买的数和总价如表所示.社区甲型垃圾桶乙型垃圾桶总价A1083320试卷第5页,总6页B592860Cab2820(1)运用本学期所学知识,列二元一次方程组求甲型垃圾桶、乙型垃圾桶的单价每套分别是多少元?(2)按要求各个社区两种类型的垃圾桶都要有,则a=.23.甲、乙两车从A地出发,沿同一路线驶向B地,甲车先出发匀速驶向B地,40min后,乙车出发,匀速行驶一段时间后,在途中的货站装货耗时半小时.由于满载货物,为了行驶安全,速度减少了50km/h,结果与甲车同时到达B地,甲乙两车距A地的路程y(km)与乙车行驶时间x(h)之间的函数图象如图所示(1)a=,甲的速度是km/h;(2)求线段CF对应的函数表达式,并求乙刚到达货站时,甲距B地还有多远?(3)乙车出发min追上甲车?(4)直接写出甲出发多长时间,甲乙两车相距40km.24.如图1,直线AB∥CD,直线l与直线AB,CD相交于点E,F,点P是射线EA上的一个动点(不包括端点)(1)若∠CFE=119°,PG交∠FEB的平分线EG于点G,∠APG=150°,则∠G的大小为.(2)如图2,连接PF.将△EPF折叠,顶点E落在点Q处.①若∠PEF=48°,点Q刚好落在其中的一条平行线上,请直接写出∠EFP的大小为.②若∠PEF=75°,∠CFQ=12∠PFC,求∠EFP的度数.试卷第6页,总6页25.如图,平面直角坐标系中,直线AB:y=﹣x+b交y轴于点A(0,4),交x轴于点B.(1)求直线AB的表达式和点B的坐标;(2)直线l垂直平分OB交AB于点D,交x轴于点E,点P是直线l上一动点,且在点D的上方,设点P的纵坐标为n.①用含n的代数式表示△ABP的面积;②当S△ABP=8时,求点P的坐标;③在②的条件下,以PB为斜边在第一象限作等腰直角△PBC,求点C的坐标.
本文标题:20192020学年沈阳市沈河区八年级上学期期末数学试题
链接地址:https://www.777doc.com/doc-10427176 .html