您好,欢迎访问三七文档
写作好帮手1/18二次根式教案4篇【导读】这篇文档“二次根式教案4篇”由三一刀客最美丽善良的网友为您分享整理的,供您参考学习,希望这篇文档对您有所帮助,喜欢就分享给朋友们下载吧!《二次根式》教学教案【第一篇】一、说教材首先谈一谈我对教材的理解。本节课选自人教版八年级下册,主要探究二次根式加减法的计算方法。此前学生在学习二次根式的性质和乘除法时都有过化简二次根式的经历,为本节课的学习做了良好的铺垫;本节课的学习为后续学习二次根式的混合运算打下基础。二、说学情再来谈谈学生的情况。这一阶段的学生已经具备了一定的发现问题、解决问题的能力,逻辑思维和计算能力也有了很大的提升。因此教师在教学过程中,要针对学生的特点进行有针对的教学,以便于课程内容的有效展开。三、说教学目标基于以上分析,我制定了如下三维教学目标:写作好帮手2/18(一)知识与技能掌握二次根式加减法的计算方法,并能用以解决简单问题。(二)过程与方法通过探究二次根式加减法的计算方法的过程,进一步感受由特殊到一般的思想,提升运算能力。(三)情感、态度与价值观感受数学和生活息息相关,提升学习数学的兴趣。四、说教学重难点在教学目标的实现过程中,教学重点是二次根式加减法的计算方法,教学难点是二次根式加减法的计算方法的探究。五、说教法学法现代教学理论认为,在教学过程中,学生是学习的主体,教师是学习的组织者、引导者、合作者。根据这一教学理念,本节课我将采用讲授法、练习法、小组合作探究等教学方法。六、说教学过程下面重点谈谈我对教学过程的设计。(一)导入新课此时我会请学生尝试总结二次根式加减法的计算方法。以学生的现有能力,能够说出其中的关键内容。写作好帮手3/18我会在此基础上予以规范:一般地,二次根式加减时,可以先将二次根式化成最简二次根式,再将被开方数相同的二次根式进行合并。以上活动使得学生亲身经历了知识的形成过程,更容易理解和接受,同时能够提升分析问题、解决问题与类比迁移等诸多方面的能力。(三)课堂练习对于本节课而言,探究计算方法是其中一项目标,巩固练习也同样重要。我会选用教材上的例1和例2作为课堂练习题。例1的第(1)小题是两个具体的二次根式相减,相对简单,直接考查二次根式加减法的计算方法;第(2)小题二次根式的被开方数中含有字母,更加具有一般性,在一定程度上考验抽象思维。例2第(1)小题难度有所提升,不仅二次根式相对复杂,而且是加减混合运算;第(2)小题更是在加减混合运算的基础上出现了小括号,并且各括号内部无法合并,因此多了一个去括号的步骤。这样的练习题不仅进一步完善了二次根式加减法的计算方法,而且能让学生体会到二次根式的加减与整式的加减在流程上的一致性,从而建立新旧知识间的联系,完善知识体系。写作好帮手4/18(四)小结作业最后,我会请学生自主总结本节课的收获,在锻炼学生的总结与表达能力的同时获得教学反馈。课后作业一方面是完成课后练习,再次巩固二次根式的加减法;另一方面是总结二次根式的概念、性质及运算法则,以便形成系统的认知。次根式教案【第二篇】一、内容和内容解析1.内容二次根式的概念。2.内容解析本节课是在学生学习了平方根、算术平方根、立方根的概念,会用根号表示数的平方根、立方根,知道开方与乘方互为逆运算的基础上,来学习二次根式的概念。它不仅是对前面所学知识的综合应用,也为后面学习二次根式的性质和四则运算打基础。教材先设置了三个实际问题,这些问题的结果都可以表示成二次根式的形式,它们都表示一些正数的算术平方根,由此引出二次根式的定义。再通过例1讨论了二次根式中被开方数字母的取值范围的问题,加深学生对二次根式的定义的理解。写作好帮手5/18本节课的教学重点是:了解二次根式的概念;二、目标和目标解析1、教学目标(1)体会研究二次根式是实际的需要.(2)了解二次根式的概念.2、教学目标解析(1)学生能用二次根式表示实际问题中的数量和数量关系,体会研究二次根式的必要性.(2)学生能根据算术平方根的意义了解二次根式的概念,知道被开方数必须是非负数的理由,知道二次根式本身是一个非负数,会求二次根式中被开方数字母的取值范围.三、教学问题诊断分析对于二次根式的定义,应侧重让学生理解“的双重非负性,”即被开方数≥0是非负数,的算术平方根≥0也是非负数。教学时注意引导学生回忆在实数一章所学习的有关平方根的意义和特征,帮助学生理解这一要求,从而让学生得出二次根式成立的条件,并运用被开方数是非负数这一条件进行二次根式有意义的判断。本节课的教学难点为:理解二次根式的双重非负性。四、教学过程设计写作好帮手6/181.创设情境,提出问题问题1你能用带有根号的的式子填空吗?(1)面积为3的正方形的边长为_______,面积为S的正方形的边长为_______.(2)一个长方形围栏,长是宽的2倍,面积为130?,则它的宽为______.(3)一个物体从高处自由落下,落到地面所用的时间t(单位:s)与开始落下的高度h(单位:)满足关系h=5t?,如果用含有h的式子表示t,则t=_____.师生活动:学生独立完成上述问题,用算术平方根表示结果,教师进行适当引导和评价。设计意图让学生在填空过程中初步感知二次根式与实际生活的紧密联系,体会研究二次根式的必要性.问题2上面得到的式子,,分别表示什么意义?它们有什么共同特征?师生活动:教师引导学生说出各式的意义,概括它们的共同特征:都表示一个非负数(包括字母或式子表示的非负数)的算术平方根.设计意图为概括二次根式的概念作铺垫.2.抽象概括,形成概念问题3你能用一个式子表示一个非负数的算术平写作好帮手7/18方根吗?师生活动:学生小组讨论,全班交流.教师由此给出二次根式的定义:一般地,我们把形如(a≥0)的式子叫做二次根式,“”称为二次根号.设计意图让学生体会由特殊到一般的过程,培养学生的概括能力.追问:在二次根式的概念中,为什么要强调“a≥0”?师生活动:教师引导学生讨论,知道二次根式被开方数必须是非负数的理由.设计意图进一步加深学生对二次根式被开方数必须是非负数的理解.3.辨析概念,应用巩固例1当时怎样的实数时,在实数范围内有意义?师生活动:引导学生从概念出发进行思考,巩固学生对二次根式的被开方数为非负数的理解.例2当是怎样的实数时,在实数范围内有意义?呢?师生活动:先让学生独立思考,再追问.设计意图在辨析中,加深学生对二次根式被开方数为非负数的理解.问题4你能比较与0的大小吗?写作好帮手8/18师生活动:通过分和这两种情况的讨论,比较与0的大小,引导学生得出≥0的结论,强化学生对二次根式本身为非负数的理解,设计意图通过这一活动的设计,提高学生对所学知识的迁移能力和应用意识;培养学生分类讨论和归纳概括的能力。4.综合运用,巩固提高练习1完成教科书第3页的练习。练习2当x是什么实数时,下列各式有意义。(1);(2);(3);(4)。设计意图辨析二次根式的概念,确定二次根式有意义的条件。设计意图设计有一定综合性的题目,考查学生的灵活运用的能力,开阔学生的视野,训练学生的思维。5.总结反思教师和学生一起回顾本节课所学主要内容,并请学生回答以下问题。(1)本节课你学到了哪一类新的式子?(2)二次根式有意义的条件是什么?二次根式的值的范围是什么?(3)二次根式与算术平方根有什么关系?师生活动:教师引导,学生小结。写作好帮手9/18设计意图:学生共同总结,互相取长补短,再一次突出本节课的学习重点,掌握解题方法。6.布置作业:教科书习题第1,3,5,7,10题.五、目标检测设计1、下列各式中,一定是二次根式的是()A.B.C.D.设计意图考查对二次根式概念的了解,要特别注意被开方数为非负数.2、当时,二次根式无意义.设计意图考查二次根式无意义的条件,即被开方数小于0,要注意审题.3、当时,二次根式有最小值,其最小值是.设计意图本题主要考查二次根式被开方数是非负数的灵活运用.4、对于,小红根据被开方数是非负数,得出的取值范围是≥.小慧认为还应考虑分母不为0的情况.你认为小慧的想法正确吗?试求出的取值范围.设计意图考查二次根式的被开方数为非负数和一个式子的分母不能为0,解题时需要综合考虑.次根式教案【第三篇】写作好帮手10/18一、学习目标:1、多项式除以单项式的运算法则及其应用。2、多项式除以单项式的运算算理。二、重点难点:重点:多项式除以单项式的运算法则及其应用难点:探索多项式与单项式相除的运算法则的过程三、合作学习:(一)回顾单项式除以单项式法则(二)学生动手,探究新课1、计算下列各式:(1)(am+bm)÷m(2)(a2+ab)÷a(3)(4x2y+2xy2)÷2xy.2、提问:①说说你是怎样计算的②还有什么发现吗?(三)总结法则1、多项式除以单项式:先把这个多项式的每一项除以___________,再把所得的商______2、本质:把多项式除以单项式转化成______________四、精讲精练例:(1)(12a3-6a2+3a)÷3a;(2)(21x4y3-35x3y2+7x2y2)÷(-7x2y);写作好帮手11/18(3)[(x+y)2-y(2x+y)-8x]÷2x(4)(-6a3b3+8a2b4+10a2b3+2ab2)÷(-2ab2)随堂练习:教科书练习五、小结1、单项式的除法法则2、应用单项式除法法则应注意:A、系数先相除,把所得的结果作为商的系数,运算过程中注意单项式的系数饱含它前面的符号B、把同底数幂相除,所得结果作为商的因式,由于目前只研究整除的情况,所以被除式中某一字母的指数不小于除式中同一字母的指数;C、被除式单独有的字母及其指数,作为商的一个因式,不要遗漏;D、要注意运算顺序,有乘方要先做乘方,有括号先算括号里的,同级运算从左到右的顺序进行。E、多项式除以单项式法则第三十四学时:平方差公式一、学习目标:1、经历探索平方差公式的过程。2、会推导平方差公式,并能运用公式进行简单的运算。二、重点难点写作好帮手12/18重点:平方差公式的推导和应用难点:理解平方差公式的结构特征,灵活应用平方差公式。三、合作学习你能用简便方法计算下列各题吗?(1)2001×1999(2)998×1002导入新课:计算下列多项式的积。(1)(x+1)(x-1)(2)(m+2)(m-2)(3)(2x+1)(2x-1)(4)(x+5y)(x-5y)结论:两个数的和与这两个数的差的积,等于这两个数的平方差。即:(a+b)(a-b)=a2-b2四、精讲精练例1:运用平方差公式计算:(1)(3x+2)(3x-2)(2)(b+2a)(2a-b)(3)(-x+2y)(-x-2y)例2:计算:(1)102×98(2)(y+2)(y-2)-(y-1)(y+5)随堂练习次根式教案【第四篇】一、内容和内容解析写作好帮手13/181、内容二次根式的概念。2、内容解析本节课是在学生学习了平方根、算术平方根、立方根的概念,会用根号表示数的平方根、立方根,知道开方与乘方互为逆运算的基础上,来学习二次根式的概念。它不仅是对前面所学知识的综合应用,也为后面学习二次根式的性质和四则运算打基础。教材先设置了三个实际问题,这些问题的结果都可以表示成二次根式的形式,它们都表示一些正数的算术平方根,由此引出二次根式的定义。再通过例1讨论了二次根式中被开方数字母的取值范围的问题,加深学生对二次根式的定义的理解。本节课的教学重点是:了解二次根式的概念;二、目标和目标解析1、教学目标(1)体会研究二次根式是实际的需要。(2)了解二次根式的概念。2、教学目标解析(1)学生能用二次根式表示实际问题中的数量和数量关系,体会研究二次根式的必要性。(2)学生能根据算术平方根的意义了解二次根式写作好帮手14/18的概念,知道被开方数必须是非负数的理由,知道二次根式本身是一个非负数,会求二次根式中被开方数字母的取值范围。三、教学问题诊断分析对于二次根式的定义,应侧重让学生理解“的双重非负性,”即被开方数≥0是非负数,的算术平方根≥0也是非负数。教学时注意引导学生回忆在实数一章所学习的有关平方根的意义和特征,帮助学生理解这一要求,从而
本文标题:二次根式教案4篇
链接地址:https://www.777doc.com/doc-10532388 .html