您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 七年级数学下册教案【汇编4篇】
参考资料,少熬夜!七年级数学下册教案【汇编4篇】【导读指引】三一刀客最漂亮的网友为您整理分享的“七年级数学下册教案【汇编4篇】”文档资料,供您学习参考,希望此文档对您有所帮助,喜欢就分享给朋友们吧!七年级下册数学教案【第一篇】一、教材分析1、特点与地位:重点中的重点。本课是教材求两结点之间的最短路径问题是图最常见的应用的之一,在交通运输、通讯网络等方面具有一定的实用意义。2、重点与难点:结合学生现有抽象思维能力水平,已掌握基本概念等学情,以及求解最短路径问题的自身特点,确立本课的重点和难点如下:(1)重点:如何将现实问题抽象成求解最短路径问题,以及该问题的解决方案。(2)难点:求解最短路径算法的程序实现。3、教学安排:最短路径问题包含两种情况:一种是求从某个源点到其他各结点的最短路径,另一种是求每一对结点之间的最短路径。根据教学大纲安排,重点讲解第一种情况问题的解决。安排一个课时讲授。教材直接分析算法,考虑实际应用需要,补充旅游景点线路选择的实例,实例中问题解决与算法分析相结合,逐步推动教学过程。二、教学目标分析1、知识目标:掌握最短路径概念、能够求解最短路径。2、能力目标:(1)通过将旅游景点线路选择问题抽象成求最短路径问题,培养学生的数据抽象能力。(2)通过旅游景点线路选择问题的解决,培养学生的独立思考、分析问题、解决问题的能力。3、素质目标:培养学生讲究工作方法、与他人合作,提高效率。三、教法分析课前充分准备,研读教材,查阅相关资料,制作多媒体课件。教学过程中除了使用传统的“讲授法”以外,主要采用“案例教学法”,同时辅以多媒体课件,以启发的方式展开教学。由于本节课的内容属于图这一章的难点,考虑学生的接受能力,注意与学生沟通,根据学生的反应控制好教学进度是本节课成功的关键。四、学法指导参考资料,少熬夜!1、课前上次课结课时给学生布置任务,使其有针对性的预习。2、课中指导学生讨论任务解决方法,引导学生分析本节课知识点。3、课后给学生布置同类型任务,加强练习。五、教学过程分析(一)课前复习(3~5分钟)回顾“路径”的概念,为引出“最短路径”做铺垫。教学方法及注意事项:(1)采用提问方式,注意及时小结,提问的目的是帮助学生回忆概念。(2)提示学生“温故而知新”,养成良好的学习习惯。(二)导入新课(3~5分钟)以城市公路网为例,基于求两个点间最短距离的实际需要,引出本课教学内容“求最短路径问题”。教学方法及注意事项:(1)先讲实例,再指出概念,既可以吸引学生注意力,激发学习兴趣,又可以实现教学内容的自然过渡。(2)此处使用案例教学法,不在于问题的求解过程,只是为了说明问题的存在,所以这里的例子只需要概述,能够说明问题即可。(三)讲授新课(25~30分钟)1、求某一结点到其他各结点的最短路径(重点)主要采用案例教学法,提出旅游景点选择的例子,解决如何选择代价小、景点多的路线。(1)将实际问题抽象成图中求任一结点到其他结点最短路径问题。(3~5分钟)教学方法及注意事项:①主要采用讲授法,将实际问题用图形表示出来。语言描述转换的方法(用圆圈加标号表示某一景点,用箭头表示从某景点到其他景点是否存在旅游线路,并且将旅途费用写在箭头的旁边。)一边用语言描述,一边在黑上画图。②注意示范画图只进行一部分,让学生独立思考、自主完成余下部分的转化。③及时总结,原型抽象(景点作为图的结点,景点间的线路作为图的边,旅途费用作为边的权值),将案例求解问题抽象成求图中某一结点到其他各结点的最短路径问题。④利用多媒体课件,向学生展示一张带权有向图,并略作解释,为后续教学做准备。教学方法及注意事项:①启发式教学,如何实现按路径长度递增产生最短路径?②结合案例分析求解最短路径过程中(重点)注意参考资料,少熬夜!此处借助黑板,按照算法思想的步骤。同样,也是只示范一部分,余下部分由学生独立思考完成。(四)课堂小结(3~5分钟)1、明确本节课重点2、提示学生,这种方式形成的图又可以解决哪类实际问题呢?(五)布置作业1、书面作业:复习本次课内容,准备一道备用习题,灵活把握时间安排。六、教学特色以旅游路线选择为主线,灵活采用案例教学、示范教学、多媒体课件等多种手段辅助教学,使枯燥的理论讲解生动起来。在顺利开展教学的同时,体现所讲内容的实用性,提高学生的学习兴趣。七年级数学下册教案【第二篇】教学目标1、使学生受到初步的辩证唯物主义观点的教育。2、使学生学会并掌握“按比例分配”应用题的解答方法,掌握“比例分配”问题的特征,能熟练地计算。教学重点和难点把比转化成分数。教学过程设计(一)复习准备2、甲数与乙数的比是4∶5。①甲数是乙数的几分之几?②乙数是甲数的几分之几?③甲数是甲、乙总数的几分之几?④乙数是甲、乙总数的几分之几?3、出示投影图:师:看到此图你能想到什么?学生说,老师写在胶片上:①女生与男生的比是3∶2。②男生与女生的比是2∶3。4、某生产队运来60吨化肥,平均分给5个小队。每个小队分到多少吨?60÷5=12(吨)这种解答的方法,在算术上叫什么方法?刚才我们解题的方法叫平均分配的方法,在工农业生产和日常生活中应用很广泛,而且这种方法你们早已比较熟悉,也经常用它解决一些实际问题。但有些事情,用这种方法就行不通了。如:你们单元住着18家,每月交的水电费能平均分配吗?参考资料,少熬夜!又如:国家搞绿化建设,能把绿化任务平均分配给各单位吗?比如生产队的土地,也要根据国家计划,合理安排种植,不能想种什么就种什么,所有这些,都需要把一个数量按照一定的“比”进行分配,这样的分配方法叫“按比例分配”。(板书课题)(二)学习新课1、出示例题。例1第四生产队计划把400公顷地按照3∶2的比例播种粮食作物和经济作物。粮食作物和经济作物各种多少公顷?学生读题,分析题中的条件与问题,教师把条件与问题简写出来:然后再让学生带着三个问题去思考。(1)两种作物一共几份?怎样求?(3)400公顷是总数,要求的两种作物各种多少公顷?怎样计算?分析:①用一个长方形表示全部土地。(画图)②根据粮、经之比是3∶2,你知道什么意思?(粮3份,经2份。)师边说边把长方形平均分成5份,其中3份标粮,其中2份标经。观察:①从图上看,把全部土地平均分成几份?你怎么算出来的?(板书)总份数:3+2=53∶2,实质都表示倍数关系。现在这道题能够解决了。粮食作物多少公顷?怎么算?经济作物多少公顷?怎么算?验算:①求总数240+160=400②求比240∶160=3∶2答:粮食作物240公顷,经济作物160公顷。(附图)这道题就是“按比例分配”的问题。解决这个问题的关键是:首先多少。师归纳:问题通过分析得到解决,又经过验算证明方法正确,从这道题可以悟出解答“按比例分配”应用题的规律为:已知两个数的和与两个数的比,把两个数的比转化成各占几分之几,然后按“求一个数的几分之几是多少用乘法”的方法解答。参考资料,少熬夜!2、试一试。抓住主要矛盾练习,运用规律解决问题。把45棵树苗分给两个中队,使两个中队分得的树苗的比是4∶5,每个中队各得几棵树苗?总份数是几?怎么算?一中队占几分之几?二中队占几分之几?①总份数4+5=9验算:①总棵树20+25=45(棵)②比20∶25=4∶5答:一中队得20棵,二中队得25棵。(三)巩固反馈1、某工厂有职工1800人,男女职工人数比是5∶4,求男女职工各多少人?2、沙子灰是灰和沙子混合而成的,它们的比是7∶3。要用280吨沙子灰,则灰和沙子各需多少吨?3、图书馆买来160本儿童故事书,按1∶2∶3分给低、中、高年级同学阅读。低、中、高年级各分到多少本?以上三题只列出主要算式即可。4、学校把560棵的植树任务,按照五年级三个班人数分配给各班。一班47人,二班45人,三班48人。三个班级各植树多少棵?分析条件、问题以后让学生讨论:①三个班植树的总棵树是几?②题目要求按什么比?人数比是几比几?③三个数的和及三个数的比知道后,根据“按比例分配”的规律,怎样计算这道题?试着让学生在本上做,老师巡视,然后把方法集中到黑板上。(找用不同方法计算的学生板演。)5、有一块试验田,周长200米,长与宽的比是3∶2。这块试验田的面积是多少平方米?(这道题给了长与宽的比是3∶2,指的是一个长与一个宽的比,而周长包括2个长和2个宽,因此先求出一个长宽的和,即200÷2,然后把100按3∶2去分配。)6、看图编一道按比例分配题解答。7、水是由氢和氧按1∶8的重量比化合而成的。千克的水中含氢、氧各多少千克?(看谁用的方法多。)方法18+1=9方法2÷9=(千克)×1=(千克)×8=(千克)参考资料,少熬夜!方法3方法4÷(8+1)=(千克)×8=(千克)方法5解:设氢为x千克。=8x=9xx===方法6解:设氧为x千克。x=()×8x=9x=x===以上方法4,5,6要写全过程。七年级下册数学教案【第三篇】一、学习目标1.使学生了解运用公式法分解因式的意义;2.使学生掌握用平方差公式分解因式二、重点难点重点:掌握运用平方差公式分解因式。难点:将单项式化为平方形式,再用平方差公式分解因式。学习方法:归纳、概括、总结。三、合作学习创设问题情境,引入新课在前两学时中我们学习了因式分解的定义,即把一个多项式分解成几个整式的积的形式,还学习了提公因式法分解因式,即在一个多项式中,若各项都含有相同的因式,即公因式,就可以把这个公因式提出来,从而将多项式化成几个因式乘积的形式。如果一个多项式的各项,不具备相同的因式,是否就不能分解因式了呢?当然不是,只要我们记住因式分解是多项式乘法的相反过程,就能利用这种关系找到新的因式分解的方法,本学时我们就来学习另外的一种因式分解的方法——公式法。1.请看乘法公式左边是整式乘法,右边是一个多项式,把这个等式参考资料,少熬夜!反过来就是左边是一个多项式,右边是整式的乘积。大家判断一下,第二个式子从左边到右边是否是因式分解?利用平方差公式进行的因式分解,第(2)个等式可以看作是因式分解中的平方差公式。a2—b2=(a+b)(a—b)2.公式讲解如x2—16=(x)2—42=(x+4)(x—4)。9m2—4n2=(3m)2—(2n)2=(3m+2n)(3m—2n)。四、精讲精练例1、把下列各式分解因式:(1)25—16x2;(2)9a2—b2。例2、把下列各式分解因式:(1)9(m+n)2—(m—n)2;(2)2x3—8x。补充例题:判断下列分解因式是否正确。(1)(a+b)2—c2=a2+2ab+b2—c2。(2)a4—1=(a2)2—1=(a2+1)?(a2—1)。五、课堂练习教科书练习。六、作业1、教科书习题。2、分解因式:x4—16x3—4x4x2—(y—z)2。3、若x2—y2=30,x—y=—5求x+y。七年级数学下册教案【第四篇】教学目标:1,掌握数轴的概念,理解数轴上的点和有理数的对应关系;2,会正确地画出数轴,会用数轴上的点表示给定的有理数,会根据数轴上的点读出所表示的有理数;3,感受在特定的条件下数与形是可以相互转化的,体验生活中的数学。教学难点:数轴的概念和用数轴上的点表示有理数知识重点教学过程(师生活动)设计理念设置情境引入课题教师通过实例、课件演示得到温度计读数。问题1:温度计是我们日常生活中用来测量温度的重要工具,你会读温度计吗?请你尝试读出图中三个温参考资料,少熬夜!度计所表示的温度?(多媒体出示3幅图,三个温度分别为零上、零度和零下)问题2:在一条东西向的马路上,有一个汽车站,汽车站东3m和处分别有一棵柳树和一棵杨树,汽车站西3m和处分别有一棵槐树和一根电线杆,试画图表示这一情境。(小组讨论,交流合作,动手操作)创设问题情境,激发学生的学习热情,发现生活中的数学。探究新知教师:由上述两问题我们得到什么启发?你能用一条直线上的点表示有理数吗?让学生在讨论的基础上动手操作,在操作的基础上归纳出:可以表示有理数的直线必须满足什么条件?从而得出数轴的三要素:原点、正方向、单位长度体验数形结合思想;只描述数轴特征即可,不用特别强调数轴三要求。从游戏中学数学做游戏:教师准备
本文标题:七年级数学下册教案【汇编4篇】
链接地址:https://www.777doc.com/doc-10647541 .html