您好,欢迎访问三七文档
高中导数题型总结首先,关于二次函数的不等式恒成立的主要解法。最后,同学们在看例题时,请注意寻找关键的等价变形和回归的基础一、基础题型:函数的单调区间、极值、最值;不等式恒成立;1、此类问题提倡按以下三个步骤进行解决:第一步:令得到两个根;第二步:画两图或列表;第三步:由图表可知;其中不等式恒成立问题的实质是函数的最值问题,2、常见处理方法有三种:第一种:分离变量求最值-----用分离变量时要特别注意是否需分类讨论(0,=0,第二种:变更主元(即关于某字母的一次函数)-----(已知谁的范围就把谁作为主元);例1:设函数在区间D上的导数为,在区间D上的导数为,若在区间D上,恒成立,则称函数在区间D上为“凸函数”,已知实数m是常数,(1)若在区间上为“凸函数”,求m的取值范围;(2)若对满足的任何一个实数,函数在区间上都为“凸函数”,求的最大值.解:由函数得(1)在区间上为“凸函数”,则在区间[0,3]上恒成立解法一:从二次函数的区间最值入手:等价于解法二:分离变量法:∵当时,恒成立,当时,恒成立等价于的最大值()恒成立,而()是增函数,则(2)∵当时在区间上都为“凸函数”则等价于当时恒成立变更主元法再等价于在恒成立(视为关于m的一次函数最值问题)请同学们参看2010第三次周考:例2:设函数(Ⅰ)求函数f(x)的单调区间和极值;(Ⅱ)若对任意的不等式恒成立,求a的取值范围.(二次函数区间最值的例子)解:(Ⅰ)令得的单调递增区间为(a,3a)令得的单调递减区间为(-,a)和(3a,+)∴当x=a时,极小值=当x=3a时,极大值=b.(Ⅱ)由||≤a,得:对任意的恒成立①则等价于这个二次函数的对称轴(放缩法)即定义域在对称轴的右边,这个二次函数的最值问题:单调增函数的最值问题。上是增函数.(9分)∴于是,对任意,不等式①恒成立,等价于又∴点评:重视二次函数区间最值求法:对称轴(重视单调区间)与定义域的关系第三种:构造函数求最值题型特征:恒成立恒成立;从而转化为第一、二种题型例3;已知函数图象上一点处的切线斜率为,(Ⅰ)求的值;(Ⅱ)当时,求的值域;(Ⅲ)当时,不等式恒成立,求实数t的取值范围。解:(Ⅰ)∴,解得(Ⅱ)由(Ⅰ)知,在上单调递增,在上单调递减,在上单调递减又∴的值域是(Ⅲ)令思路1:要使恒成立,只需,即分离变量思路2:二次函数区间最值二、题型一:已知函数在某个区间上的单调性求参数的范围解法1:转化为在给定区间上恒成立,回归基础题型解法2:利用子区间(即子集思想);首先求出函数的单调增或减区间,然后让所给区间是求的增或减区间的子集;做题时一定要看清楚“在(m,n)上是减函数”与“函数的单调减区间是(a,b)”,要弄清楚两句话的区别:前者是后者的子集例4:已知,函数.(Ⅰ)如果函数是偶函数,求的极大值和极小值;(Ⅱ)如果函数是上的单调函数,求的取值范围.解:.(Ⅰ)∵是偶函数,∴.此时,,令,解得:.列表如下:(-∞,-2)-2(-2,2)2(2,+∞)+0-0+递增极大值递减极小值递增可知:的极大值为,的极小值为.(Ⅱ)∵函数是上的单调函数,∴,在给定区间R上恒成立判别式法则解得:.综上,的取值范围是.例5、已知函数(I)求的单调区间;(II)若在[0,1]上单调递增,求a的取值范围。子集思想(I)1、当且仅当时取“=”号,单调递增。2、单调增区间:单调增区间:(II)当则是上述增区间的子集:1、时,单调递增符合题意2、,综上,a的取值范围是[0,1]。三、题型二:根的个数问题题1函数f(x)与g(x)(或与x轴)的交点======即方程根的个数问题解题步骤第一步:画出两个图像即“穿线图”(即解导数不等式)和“趋势图”即三次函数的大致趋势“是先增后减再增”还是“先减后增再减”;第二步:由趋势图结合交点个数或根的个数写不等式(组);主要看极大值和极小值与0的关系;第三步:解不等式(组)即可;例6、已知函数,,且在区间上为增函数.求实数的取值范围;若函数与的图象有三个不同的交点,求实数的取值范围.解:(1)由题意∵在区间上为增函数,∴在区间上恒成立(分离变量法)即恒成立,又,∴,故∴的取值范围为(2)设,令得或由(1)知,①当时,,在R上递增,显然不合题意…②当时,,随的变化情况如下表:—↗极大值↘极小值↗由于,欲使与的图象有三个不同的交点,即方程有三个不同的实根,故需,即∴,解得综上,所求的取值范围为根的个数知道,部分根可求或已知。例7、已知函数(1)若是的极值点且的图像过原点,求的极值;(2)若,在(1)的条件下,是否存在实数,使得函数的图像与函数的图像恒有含的三个不同交点?若存在,求出实数的取值范围;否则说明理由。解:(1)∵的图像过原点,则,又∵是的极值点,则(2)设函数的图像与函数的图像恒存在含的三个不同交点,等价于有含的三个根,即:整理得:即:恒有含的三个不等实根(计算难点来了:)有含的根,则必可分解为,故用添项配凑法因式分解,十字相乘法分解:恒有含的三个不等实根等价于有两个不等于-1的不等实根。题2:切线的条数问题====以切点为未知数的方程的根的个数例7、已知函数在点处取得极小值-4,使其导数的的取值范围为,求:(1)的解析式;(2)若过点可作曲线的三条切线,求实数的取值范围.(1)由题意得:∴在上;在上;在上因此在处取得极小值∴①,②,③由①②③联立得:,∴(2)设切点Q,过令,求得:,方程有三个根。需:故:;因此所求实数的范围为:题3:已知在给定区间上的极值点个数则有导函数=0的根的个数解法:根分布或判别式法例8、解:函数的定义域为(Ⅰ)当m=4时,f(x)=x3-x2+10x,=x2-7x+10,令,解得或.令,解得可知函数f(x)的单调递增区间为和(5,+∞),单调递减区间为.(Ⅱ)=x2-(m+3)x+m+6,要使函数y=f(x)在(1,+∞)有两个极值点,=x2-(m+3)x+m+6=0的根在(1,+∞)根分布问题:则,解得m3例9、已知函数,(1)求的单调区间;(2)令=x4+f(x)(x∈R)有且仅有3个极值点,求a的取值范围.解:(1)当时,令解得,令解得,所以的.递增区间为,递减区间为.当时,同理可得的递增区间为,递减区间为.(2)有且仅有3个极值点=0有3个根,则或,方程有两个非零实根,所以或而当或时可证函数有且仅有3个极值点其它例题:1、(最值问题与主元变更法的例子).已知定义在上的函数在区间上的最大值是5,最小值是-11.(Ⅰ)求函数的解析式;(Ⅱ)若时,恒成立,求实数的取值范围.解:(Ⅰ)令=0,得因为,所以可得下表:0+0-↗极大↘因此必为最大值,∴因此,,即,∴,∴(Ⅱ)∵,∴等价于,令,则问题就是在上恒成立时,求实数的取值范围,为此只需,即,解得,所以所求实数的取值范围是[0,1].2、(根分布与线性规划例子)(1)已知函数(Ⅰ)若函数在时有极值且在函数图象上的点处的切线与直线平行,求的解析式;(Ⅱ)当在取得极大值且在取得极小值时,设点所在平面区域为S,经过原点的直线L将S分为面积比为1:3的两部分,求直线L的方程.解:(Ⅰ).由,函数在时有极值,∴∵∴又∵在处的切线与直线平行,∴故∴…………………….7分(Ⅱ)解法一:由及在取得极大值且在取得极小值,∴即令,则∴∴故点所在平面区域S为如图△ABC,易得,,,,,同时DE为△ABC的中位线,∴所求一条直线L的方程为:另一种情况设不垂直于x轴的直线L也将S分为面积比为1:3的两部分,设直线L方程为,它与AC,BC分别交于F、G,则,由得点F的横坐标为:由得点G的横坐标为:∴即解得:或(舍去)故这时直线方程为:综上,所求直线方程为:或.…………….………….12分(Ⅱ)解法二:由及在取得极大值且在取得极小值,∴即令,则∴∴故点所在平面区域S为如图△ABC,易得,,,,,同时DE为△ABC的中位线,∴所求一条直线L的方程为:另一种情况由于直线BO方程为:,设直线BO与AC交于H,由得直线L与AC交点为:∵,,∴所求直线方程为:或3、(根的个数问题)已知函数的图象如图所示。(Ⅰ)求的值;(Ⅱ)若函数的图象在点处的切线方程为,求函数f(x)的解析式;(Ⅲ)若方程有三个不同的根,求实数a的取值范围。解:由题知:(Ⅰ)由图可知函数f(x)的图像过点(0,3),且=0得(Ⅱ)依题意=–3且f(2)=5解得a=1,b=–6所以f(x)=x3–6x2+9x+3(Ⅲ)依题意f(x)=ax3+bx2–(3a+2b)x+3(a0)=3ax2+2bx–3a–2b由=0b=–9a①若方程f(x)=8a有三个不同的根,当且仅当满足f(5)由①②得–25a+3所以当4、(根的个数问题)已知函数(1)若函数在处取得极值,且,求的值及的单调区间;(2)若,讨论曲线与的交点个数.解:(1)………………………………………………………………………2分令得令得∴的单调递增区间为,,单调递减区间为…………5分(2)由题得即令……………………6分令得或……………………………………………7分当即时-此时,,,有一个交点;…………………………9分当即时,∴当即时,有一个交点;当即时,有两个交点;当时,,有一个交点.………………………13分综上可知,当或时,有一个交点;当时,有两个交点.…………………………………14分5、(简单切线问题)已知函数图象上斜率为3的两条切线间的距离为,函数.(Ⅰ)若函数在处有极值,求的解析式;(Ⅱ)若函数在区间上为增函数,且在区间上都成立,求实数的取值范围.
本文标题:高中导数题型总结
链接地址:https://www.777doc.com/doc-10881349 .html