您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 20212022年沈阳市浑南区九年级上学期期末数学试卷答案
2021-2022学年沈阳市浑南区九年级上学期期末数学试卷一、选择题(下列各题的备选答案中,只有一个答案是正确的,每小题2分,共20分)1.(2分)如图所示的几何体的主视图是()A.B.C.D.2.(2分)关于x的一元二次方程x2﹣6x+m=0有两个不相等的实数根,则m的值可能是()A.8B.9C.10D.113.(2分)用配方法解方程x2﹣4x﹣5=0时,原方程应变形为()A.(x﹣2)2=9B.(x﹣1)2=6C.(x+1)2=6D.(x+2)2=64.(2分)如果两个相似多边形的周长比是2:3,那么它们的面积比为()A.2:3B.4:9C.:D.16:815.(2分)如图,在直角坐标系中,有两点A(6,3),B(6,0),以原点O位似中心,相似比为,在第一象限内把线段AB缩小后得到线段CD,则点C的坐标为()A.(2,1)B.(2,0)C.(3,3)D.(3,1)6.(2分)有四张形状相同的卡片,正面分别印着矩形、菱形、等边三角形、圆四个图案,卡片背面全一样,随机抽出一张,刚好抽到正面的图案是中心对称图形的概率是()A.B.C.D.17.(2分)在同一时刻的太阳光下,小刚的影子比小红的影子长,那么,在晚上同一路灯下,()A.小刚的影子比小红的长B.小刚的影子比小红的影子短C.小刚跟小红的影子一样长D.不能够确定谁的影子长8.(2分)关于菱形的性质,以下说法不正确的是()A.四条边相等B.对角线相等C.对角线互相垂直D.是轴对称图形9.(2分)抛物线的函数表达式为y=3(x﹣2)2+1,若将x轴向上平移2个单位长度,将y轴向左平移3个单位长度,则该抛物线在新的平面直角坐标系中的函数表达式为()A.y=3(x+1)2+3B.y=3(x﹣5)2+3C.y=3(x﹣5)2﹣1D.y=3(x+1)2﹣110.(2分)一次函数y=ax+b的图象如图所示,则二次函数y=ax2+bx的图象可能是()A.B.C.D.二、填空题(每小题3分,共18分)11.(3分)关于x的一元二次方程x2+bx﹣10=0的一个根为2,则b的值为.12.(3分)已知≠0,则的值为.13.(3分)在一个不透明的袋子中有50个除颜色外均相同的小球,通过多次摸球试验后,发现摸到白球的频率约为36%,估计袋中白球有个.14.(3分)如图,小明同学用自制的直角三角形纸板DEF测量树AB的高度,他调整自己的位置,使斜边DF保持水平,并且边DE与点B在同一直线上.已知纸板的两条直角边DE=40cm,EF=20cm,测得边DF离地面的高度AC=1.5m,CD=10m,则AB=m.15.(3分)如图,已知双曲线y=(k>0)经过直角三角形OAB斜边OB的中点D,与直角边AB相交于点C.若△OBC的面积为3,则k=.16.(3分)如图,在正方形ABCD中,AB=4,E为对角线AC上与A,C不重合的一个动点,过点E作EF⊥AB于点F,EG⊥BC于点G,连接DE,FG,下列结论:①DE=FG;②DE⊥FG;③∠BFG=∠ADE;④FG的最小值为3.其中正确结论的序号为.三、解答题(第17小题6分,第18、19小题各8分,共22分)17.(6分)解方程:x2﹣7x﹣18=0.18.(8分)如图,在平行四边形ABCD中,对角线AC与BD相交于点O,在DC的延长线上取一点E,连接OE交BC于点F,延长EO交AD于点G.(1)求证:△AOG≌△COF;(2)若AB=3,BC=4,CE=2,则CF=.19.(8分)新年即将来临,利群商场为了吸引顾客,特别设计了一种促销活动:在一个不透明的箱子里放有4个除数字外完全相同的小球,球上分别标有“0元”、“10元”、“20元”和“30元”的字样.规定:顾客在本商场同一日内,每消费满200元,就可以在箱子里先后摸出两个球(第一次摸出后不放回).商场根据两小球所标金额的和返还相应价格的购物券,可以重新在本商场消费,某顾客刚好消费200元.(1)该顾客至少可得到元购物券;(2)请你用画树状图或列表的方法,求出该顾客所获得购物券的金额不低于40元的概率.四、(每小题8分,共16分)20.(8分)如图,在平行四边形ABCD中,E为BC的中点,连接AE并延长交DC的延长线于点F,连接BF,AC,且AD=AF.(1)判断四边形ABFC的形状并证明;(2)若AB=3,∠ABC=60°,求EF的长.21.(8分)如图,一次函数y1=kx+b(k≠0)的图象与反比例函数y2=(m≠0)的图象交于A(﹣1,n),B(3,﹣2)两点.(1)求一次函数和反比例函数的解析式;(2)点P在x轴上,且满足△ABP的面积等于4,请直接写出点P的坐标.五、(本题10分)22.(10分)商场某种商品平均每天可销售30件,每件盈利50元.为了尽快减少库存,商场决定采取适当的降价措施.经调查发现,每件商品每降价1元,商场平均每天可多售出2件.设每件商品降价x元.据此规律,请回答:(1)商场日销售量增加件,每件商品盈利元(用含x的代数式表示);(2)在上述条件不变、销售正常情况下,每件商品降价多少元时,商场日盈利可达到2100元?六、(本题10分)23.(10分)已知,如图,在平面直角坐标系内,点A的坐标为(0,12),经过原点的直线l1与经过点A的直线l2相交于点B,点B坐标为(﹣9,3).(1)求直线l1,l2的表达式;(2)点C为直线OB上一动点(点C不与点O,B重合),作CD∥y轴交直线l2于点D,过点C,D分别向y轴作垂线,垂足分别为F,E,得到矩形CDEF.①设点C的纵坐标为n,求点D的坐标(用含n的代数式表示);②若矩形CDEF的面积为48,请直接写出此时点C的坐标.七、(本题12分)24.(12分)在菱形ABCD中,∠ABC=60°,P是直线BD上一动点,以AP为边向右侧作等边△APE(A,P,E按逆时针排列),点E的位置随点P的位置变化而变化.(1)如图1,当点P在线段BD上,且点E在菱形ABCD内部或边上时,连接CE,则BP与CE的数量关系是,BC与CE的位置关系是;(2)如图2,当点P在线段BD上,且点E在菱形ABCD外部时,(1)中的结论是否还成立?若成立,请予以证明;若不成立,请说明理由;(3)当点P在直线BD上时,其他条件不变,连接BE.若AB=2,BE=2,请直接写出△APE的面积.八、(本题12分)25.(12分)如图,在平面直角坐标系中,已知抛物线y=ax2+2x+c(a≠0)与x轴交于点A,B,与y轴交于点C,连接BC,OA=1,OB=5,点D是此抛物线的顶点.(1)求抛物线的表达式;(2)抛物线上C,D两点之间的距离是;(3)①点E是第一象限内抛物线上的动点,连接BE和CE,求△BCE面积的最大值;②在①的条件下,当△BCE的面积最大时,P为y轴上一点,过点P作抛物线对称轴的垂线,垂足为M,连接ME,BP,探究EM+MP+PB是否存在最小值.若存在,请直接写出此时点M的坐标;若不存在,请说明理由.参考答案1-5B.A.A.B.A.6-10C.D.B.C.D.二、填空题(每小题3分,共18分)11.3.12..13.18.14.6.5.15.①②③.三、解答题(第17小题6分,第18、19小题各8分,共22分)17.解:x2﹣7x﹣18=0(x﹣9)(x+2)=0,解得:x1=9,x2=﹣2.18.(1)证明:∵四边形ABCD是平行四边形,∴AO=CO,AD∥BC,∴∠CAD=∠ACB,在△AOG和△COF中,,∴△AOG≌△COF(ASA);(2)解:∵AD∥BC,∴△CFE∽△DGE,∴,∴==,∵BC=4,∴AG=×2=,∴CF=AG=.19.解:(1)根据题意知,该顾客至少可得到10元购物券,故答案为:10;(2)根据题意列表如下:01020300/(0,10)(0,20)(0,30)10(10,0)/(10,20)(10,30)20(20,0)(20,10)/(20,30)30(30,0)(30,10)(30,20)/从上表可以看出,共有12种等可能结果,其中该顾客所获得购物券的金额不低于40元的结果有4种结果,所以该顾客所获得购物券的金额不低于40元的概率为=.20.解:(1)四边形ABFC是矩形,理由如下:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠BAE=∠CFE,∠ABE=∠FCE,∵E为BC的中点,∴EB=EC,在△ABE和△FCE中,,∴△ABE≌△FCE(AAS),∴AB=CF.∵AB∥CF,∴四边形ABFC是平行四边形,∵AD=BC,AD=AF,∴BC=AF,∴四边形ABFC是矩形.(2)∵四边形ABFC是矩形,∴BC=AF,AF=EF,BE=CE,∴AE=BE,∵∠ABC=60°,∴△ABE是等边三角形,∴AB=AE=3,∴EF=3.21.解:(1)由题意可得:点B(3,﹣2)在反比例函数图象上,∴,则m=﹣6,∴反比例函数的解析式为,将A(﹣1,n)代入,得:,即A(﹣1,6),将A,B代入一次函数解析式中,得,解得:,∴一次函数解析式为y1=﹣2x+4;(2)∵点P在x轴上,设点P的坐标为(a,0),∵一次函数解析式为y1=﹣2x+4,令y=0,则x=2,∴直线AB与x轴交于点(2,0),由△ABP的面积为4,可得:|a﹣2|=4,即|a﹣2|=4,解得:a=1或a=3,∴点P的坐标为(1,0)或(3,0).22.解:(1)降价1元,可多售出2件,降价x元,可多售出2x件,盈利的钱数=50﹣x,故答案为2x;50﹣x;(2)由题意得:(50﹣x)(30+2x)=2100(0≤x<50)化简得:x2﹣35x+300=0,即(x﹣15)(x﹣20)=0,解得:x1=15,x2=20∵该商场为了尽快减少库存,∴降的越多,越吸引顾客,∴选x=20,答:每件商品降价20元,商场日盈利可达2100元.23.解:(1)设直线l1的表达式为y=k1x,∵过点B(﹣9,3),∴﹣9k1=3,解得:k1=﹣,∴直线l1的表达式为y=﹣x;设直线l2的表达式为y=k2x+b,∵过点A(0,12),B(﹣9,3),∴,解得:,∴直线l2的表达式y=x+12;(2)①∵点C在直线l1上,且点C的纵坐标为n,∴n=﹣x,解得:x=﹣3n,∴点C的坐标为(﹣3n,n),∵CD∥y轴,∴点D的横坐标为﹣3n,∵点D在直线l2上,∴y=﹣3n+12,∴D(﹣3n,﹣3n+12);②∵C(﹣3n,n),D(﹣3n,﹣3n+12),∴CF=|3n|,CD=|﹣3n+12﹣n|=|﹣4n+12|,∵矩形CDEF的面积为60,∴S矩形CDEF=CF•CD=|3n|×|﹣4n+12|=48,解得n=﹣1或n=﹣4,当n=﹣1时,﹣3n=3,故C(3,﹣1);当n=4时,﹣3n=1﹣12,故C(﹣12,4).综上所述,点C的坐标为:(3,﹣1)或C(﹣12,4).24.解:(1)如图1,连接AC,延长CE交AD于点H,∵四边形ABCD是菱形,∴AB=BC,∵∠ABC=60°,∴△ABC是等边三角形,∴AB=AC,∠BAC=60°;∵△APE是等边三角形,∴AP=AE,∠PAE=60°,∴∠BAP=∠CAE=60°﹣∠PAC,∴△BAP≌△CAE(SAS),∴BP=CE;∵四边形ABCD是菱形,∴∠ABP=∠ABC=30°,∴∠ABP=∠ACE=30°,∵∠ACB=60°,∴∠BCE=60°+30°=90°,∵AD∥BC,∴∠CHD=∠BCH=90°,∴CE⊥AD;故答案为:BP=CE,CE⊥AD;(2)(1)中的结论:BP=CE,CE⊥AD仍然成立,理由如下:如图2中,连接AC,设CE与AD交于H,∵菱形ABCD,∠ABC=60°,∴△ABC和△ACD都是等边三角形,∴AB=AC,∠BAD=120°,∠BAP=120°+∠DAP,∵△APE是等边三角形,∴AP=AE,∠PAE=60°,∴∠CAE=60°+60°+∠DAP=120°+∠DAP,∴∠BAP=∠CAE,∴△ABP≌△ACE(SAS),∴BP=CE,∠ACE=∠ABD=30°,∴∠DCE=3
本文标题:20212022年沈阳市浑南区九年级上学期期末数学试卷答案
链接地址:https://www.777doc.com/doc-11028790 .html