您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 20202021学年沈阳市第134中学九年级上学期10月月考数学试卷解析
2020-2021学年沈阳市第134中九年级上学期月考数学试卷一、选择题:(下列各题的备选答案中,只有一个答案是正确的,每小题2分,20分)1.已知一元二次方程x2+kx﹣3=0有一个根为1,则k的值为()A.﹣2B.2C.﹣4D.4【分析】根据一元二次方程的解的定义,把把x=1代入方程得关于k的一次方程1﹣3+k=0,然后解一次方程即可.【解答】解:把x=1代入方程得1+k﹣3=0,解得k=2.故选:B.2.四边形ABCD的对角线AC与BD相交于点O,下列四组条件中,一定能判定四边形ABCD为平行四边形的是()A.AD∥BCB.OA=OC,OB=ODC.AD∥BC,AB=DCD.AC⊥BD【分析】由平行四边形的判定定理即可得出答案.【解答】解:∵OA=OC,OB=OD,∴四边形ABCD是平行四边形;故选:B.3.下列说法正确的是()A.367人中至少有2人生日相同B.任意掷一枚均匀的骰子,掷出的点数是偶数的概率是C.天气预报说明天的降水概率为90%,则明天一定会下雨D.某种彩票中奖的概率是1%,则买100张彩票一定有1张中奖【分析】利用概率的意义和必然事件的概念的概念进行分析.【解答】解:A、367人中至少有2人生日相同,正确;B、任意掷一枚均匀的骰子,掷出的点数是偶数的概率是,错误;C、天气预报说明天的降水概率为90%,则明天不一定会下雨,错误;D、某种彩票中奖的概率是1%,则买100张彩票不一定有1张中奖,错误;故选:A.4.下列结论中,矩形具有而菱形不一定具有的性质是()A.内角和为360°B.对角线互相平分C.对角线相等D.对角线互相垂直【分析】分别根据矩形和菱形的性质可得出其对角线性质的不同,可得到答案.【解答】解:矩形和菱形的内角和都为360°,矩形的对角线互相平分且相等,菱形的对角线垂直且平分,∴矩形具有而菱形不具有的性质为对角线相等,故选:C.5.如图,有三个矩形,其中是相似图形的是()A.甲和乙B.甲和丙C.乙和丙D.甲、乙和丙【分析】分别求出矩形的邻边的比,再根据相似多边形的定义解答.【解答】解:甲:邻边的比为3:2,乙:邻边的比为2.5:1.5=5:3,丙:邻边的比为1.5:1=3:2,所以,是相似图形的是甲和丙.故选:B.6.王叔叔从市场上买了一块长80cm,宽70cm的矩形铁皮,准备制作一个工具箱.如图,他将矩形铁皮的四个角各剪掉一个边长xcm的正方形后,剩余的部分刚好能围成一个底面积为3000cm2的无盖长方形工具箱,根据题意列方程为()A.(80﹣x)(70﹣x)=3000B.80×70﹣4x2=3000C.(80﹣2x)(70﹣2x)=3000D.80×70﹣4x2﹣(70+80)x=3000【分析】根据题意可知裁剪后的底面的长为(80﹣2x)cm,宽为(70﹣2x)cm,从而可以列出相应的方程,本题得以解决.【解答】解:由题意可得,(80﹣2x)(70﹣2x)=3000,故选:C.7.要制作两个形状相同的三角形框架,其中一个三角形的三边长分别为5cm,6cm和9cm,另一个三角形的最短边长为2.5cm,则它的最长边为()A.3cmB.4cmC.4.5cmD.5cm【分析】根据相似三角形的对应边成比例求解可得.【解答】解:设另一个三角形的最长边长为xcm,根据题意,得:=,解得:x=4.5,即另一个三角形的最长边长为4.5cm,故选:C.8.某居委会组织两个检查组,分别对“垃圾分类”和“违规停车”的情况进行抽查.各组随机抽取辖区内某三个小区中的一个进行检查,则两个组恰好抽到同一个小区的概率是()A.B.C.D.【分析】将三个小区分别记为A、B、C,列举出所有情况即可,看所求的情况占总情况的多少即可.【解答】解:将三个小区分别记为A、B、C,列表如下:ABCA(A,A)(B,A)(C,A)B(A,B)(B,B)(C,B)C(A,C)(B,C)(C,C)由表可知,共有9种等可能结果,其中两个组恰好抽到同一个小区的结果有3种,所以两个组恰好抽到同一个小区的概率为=,故选:C.9.如图.利用标杆BE测量建筑物的高度.已知标杆BE高1.2m,测得AB=1.6m.BC=12.4m.则建筑物CD的高是()A.9.3mB.10.5mC.12.4mD.14m【分析】先证明△ABE∽△ACD,则利用相似三角形的性质得=,然后利用比例性质求出CD即可.【解答】解:∵EB∥CD,∴△ABE∽△ACD,∴=,即=,∴CD=10.5(米).故选:B.10.如图,一个菱形的一条对角线长为7,面积为28,则该菱形的另一条对角线长为()A.8B.10C.12D.14【分析】根据菱形的面积等于两条对角线长的积的一半,可求得.【解答】解:设菱形的另一条对角线长为x,则×7×x=28,∴x=8.故选:A.二、填空题:(每小题3分,共18分11.(3分)从一个不透明的口袋中随机摸出一球,再放回袋中,不断重复上述过程,一共摸了150次,其中有50次摸到黑球,已知囗袋中仅有黑球10个和白球若干个,这些球除颜色外,其他都一样,由此估计口袋中有20个白球.【分析】先由频率=频数÷数据总数计算出频率,再由题意列出方程求解即可.【解答】解:摸了150次,其中有50次摸到黑球,则摸到黑球的频率是=,设口袋中大约有x个白球,则=,解得x=20.故答案为:20.12.(3分)若,则=5.【分析】根据比例的性质解答:设=t,则x、y、z分别用t表示,然后将其代入所求的代数式,消去t,从而解得代数式的值.【解答】解:设=t,则x=3t,y=5t,z=7t.∴==5;故答案是:5.13.(3分)经过两次连续降价,某药品销售单价由原来的50元降到32元,设该药品平均每次降价的百分率为x,根据题意可列方程是50(1﹣x)2=32.【分析】根据某药品经过连续两次降价,销售单价由原来50元降到32元,平均每次降价的百分率为x,可以列出相应的方程即可.【解答】解:由题意可得,50(1﹣x)2=32,故答案为:50(1﹣x)2=32.14.(3分)《九章算术》是中国传统数学最重要的著作,在“勾股”章中有这样一个问题:“今有邑方二百步,各中开门,出东门十五步有木,问:出南门几步而见木?”用今天的话说,大意是:如图,DEFG是一座边长为200步(“步”是古代的长度单位)的正方形小城,东门H位于GD的中点,南门K位于ED的中点,出东门15步的A处有一树木,求出南门多少步恰好看到位于A处的树木(即点D在直线AC上)?请你计算KC的长为步.【分析】证明△CDK∽△DAH,利用相似三角形的性质得=,然后利用比例性质可求出CK的长.【解答】解:DH=100,DK=100,AH=15,∵AH∥DK,∴∠CDK=∠A,而∠CKD=∠AHD,∴△CDK∽△DAH,∴=,即=,∴CK=.答:KC的长为步.故答案为.15.(3分)一次函数y=﹣2x+5的图象交x轴于点A,交y轴于点B,点P在线段AB上(不与点A、B重合),过点P分别作OA、OB的垂线,垂足为C、D,点P的坐标为(2,1)或(,4)时,矩形OCPD的面积为2.【分析】设P(a,﹣2a+5),则利用矩形的性质列出关于a的方程,通过解方程求得a值,继而求得点P的坐标.【解答】解:∵点P在一次函数y=﹣2x+5的图象上,∴P(a,﹣2a+5)(a>0),由题意得a•(﹣2a+5)=2,整理得﹣2a2+5a﹣2=0,解得a1=2,a2=,∴﹣2a+5=1或﹣2a+5=4.综上所述,当P(2,1)或(,4)时,矩形OCPD的面积为2.故答案为:(2,1)或(,4).16.(3分)如图,将面积为32的矩形ABCD沿对角线BD折叠,点A的对应点为点P,连接AP交BC于点E.若BE=,则AP的长为.【分析】设AB=a,AD=b,则ab=32,构建方程组求出a、b即可解决问题;【解答】解:设AB=a,AD=b,则ab=32,由△ABE∽△DAB可得:=,∴b=a2,∴a3=64,∴a=4,b=8,设PA交BD于O.在Rt△ABD中,BD==12,∴OP=OA==,∴AP=.故答案为.三、解答题(共3小题,满分22分)17.(6分)解方程:(x﹣3)(x﹣1)=3.【分析】先把方程化为一般式,然后利用因式分解法解方程.【解答】解:方程化为x2﹣4x=0,x(x﹣4)=0,所以x1=0,x2=4.18.(8分)解方程:x2﹣6x﹣4=0.【分析】此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用,把左边配成完全平方式,右边化为常数.【解答】解:移项得x2﹣6x=4,配方得x2﹣6x+9=4+9,即(x﹣3)2=13,开方得x﹣3=±,∴x1=3+,x2=3﹣.19.(8分)一只不透明袋子中装有三只大小、质地都相同的小球,球面上分别标有数字1、2、3,搅匀后先从中任意摸出一个小球(不放回),记下数字,再从余下的两个小球中任意摸出一个小球,记下数字,求两次都摸到奇数的概率.【分析】根据题意先画出树状图,得出所以等可能的结果数和两次都摸到奇数的情况数,然后根据概率公式求解即可.【解答】解:根据题意画图如下:共有6种等可能的情况数,其中两次都摸到奇数的有2种,则两次都摸到奇数的概率是=四、解答题:(每小题8分,共16分)20.(8分)关于x的方程x2﹣2x+2m﹣1=0有实数根,且m为正整数,求m的值及此时方程的根.【分析】直接利用根的判别式得出m的取值范围进而解方程得出答案.【解答】解:∵关于x的方程x2﹣2x+2m﹣1=0有实数根,∴b2﹣4ac=4﹣4(2m﹣1)≥0,解得:m≤1,∵m为正整数,∴m=1,∴原方程可化为x2﹣2x+1=0,则(x﹣1)2=0,解得:x1=x2=1.21.(8分)如图,在▱ABCD中,E,F分别是AD,BC上的点,且DE=BF,AC⊥EF.求证:四边形AECF是菱形.【分析】根据对角线互相垂直的平行四边形是菱形即可证明;【解答】证明:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∵DE=BF,∴AE=CF,∵AE∥CF,∴四边形AECF是平行四边形,∵AC⊥EF,∴四边形AECF是菱形.五、解答题:(每小题10分,共20分)22.(10分)如图,正方形ABCD边长为2,AE=EB,MN=1,线段MN的两端在CB、CD上滑动,且△AED与以点M、N、C为顶点的三角形相似,则CM的长是多少?【分析】根据勾股定理求出DE的长,分△AED∽△CNM和△AED∽△CMN两种情况,根据相似三角形的性质计算即可.【解答】解:∵正方形ABCD的边长为2,AE=EB,∴AE=1,∴DE===,当△AED∽△CNM时,=,即=,解得CM=,当△AED∽△CMN时,=,即=,解得CM=.23.(10分)攀枝花得天独厚,气候宜人,农产品资源极为丰富,其中晚熟芒果远销北上广等大城市.某水果店购进一批优质晚熟芒果,进价为10元/千克,售价不低于15元/千克,且不超过40元/千克.根据销售情况,发现该芒果在一天内的销售量y(千克)与该天的售价x(元/千克)之间的数量满足如下表所示的一次函数关系.销售量y(千克)…32.53535.538…售价x(元/千克)…27.52524.522…(1)某天这种芒果的售价为28元/千克,求当天该芒果的销售量.(2)设某天销售这种芒果获利m元,写出m与售价x之间的函数关系式,如果水果店该天获利400元,那么这天芒果的售价为多少元?【分析】(1)用待定系数求出一次函数解析式,再代入自变量的值求得函数值;(2)根据利润=销量×(售价﹣成本),列出m与x的函数关系式,再由函数值求出自变量的值.【解答】解:(1)设该一次函数解析式为y=kx+b(k≠0),则,解得,∴y=﹣x+60(15≤x≤40),∴当x=28时,y=32,答:芒果售价为28元/千克时,当天该芒果的销售量为32千克;(2)由题易知m=y(x﹣10)=(﹣x+60)(x﹣10)=﹣x2+70x﹣600,当m=400时,则﹣x2+70x﹣600=400,解得,x1=20,x2=50,∵15≤x≤40,∴x=20,答:这天
本文标题:20202021学年沈阳市第134中学九年级上学期10月月考数学试卷解析
链接地址:https://www.777doc.com/doc-11029653 .html