您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 2015年浙江省义乌市中考数学试卷(含解析版)
1/292015年浙江省义乌市中考数学试卷一、选择题(本题有10小题,每小题4分,共40分)1.计算3)1(的结果是A.-3B.-2C.2D.32.据报道,2015年第一季度,义乌电商实现交易额约为26000000000元,同比增长22%,将26000000000用科学计数法表示为A.2.6×1010B.2.6×1011C.26×1010D.0.26×10113.有6个相同的立方体搭成的几何体如图所示,则它的主视图是4.下面是一位同学做的四道题:①abba532;②6236)3(aa;③326aaa;④532aaa,其中做对的一道题的序号是A.①B.②C.③D.④5.在一个不透明的袋子中装有除颜色外其它均相同的3个红球和2个白球,从中任意摸出一个球,则摸出白球的概率是A.31B.52C.21D.536.化简xxx1112的结果是A.1xB.11xC.1xD.1xx7.如图,小敏做了一个角平分仪ABCD,其中AB=AD,BC=DC,将仪器上的点A与∠PRQ的顶点R重合,调整AB和AD,使它们分别落在角的两边上,过点A,C画一条射线AE,AE就是∠PRQ的平分线。此角平分仪的画图原理是:根据仪器结构,可得△ABC≌△ADC,这样就有∠QAE=∠PAE。则说明这两个三角形全等的依据是A.SASB.ASAC.AASD.SSS2/298.如图,四边形ABCD是⊙O的内接四边形,⊙O的半径为2,∠B=135°,则的长A.2B.C.2D.39.如果一种变换是将抛物线向右平移2个单位或向上平移1个单位,我们把这种变换称为抛物线的简单变换。已知抛物线经过两次简单变换后的一条抛物线是12xy,则原抛物线的解析式不可能的是A.12xyB.562xxyC.442xxyD.1782xxy10.挑游戏棒是一种好玩的游戏,游戏规则:当一根棒条没有被其它棒条压着时,就可以把它往上拿走。如图中,按照这一规则,第1次应拿走⑨号棒,第2次应拿走⑤号棒,…,则第6次应拿走A.②号棒B.⑦号棒C.⑧号棒D.⑩号棒二、填空题(本题有6小题,每小题5分,共30分)11.因式分解:42x=▲3/2912.如图,已知点A(0,1),B(0,-1),以点A为圆心,AB为半径作圆,交x轴的正半轴于点C,则∠BAC等于▲度13.由于木质衣架没有柔性,在挂置衣服的时候不太方便操作。小敏设计了一种衣架,在使用时能轻易收拢,然后套进衣服后松开即可。如图1,衣架杆OA=OB=18cm,若衣架收拢时,∠AOB=60°,如图2,则此时A,B两点之间的距离是▲cm14.在Rt△ABC中,∠C=90°,BC=3,AC=4,点P在以C为圆心,5为半径的圆上,连结PA,PB。若PB=4,则PA的长为▲15.在平面直角坐标系的第一象限内,边长为1的正方形ABCD的边均平行于坐标轴,A点的坐标为(a,a)。如图,若曲线)0(3xxy与此正方形的边有交点,则a的取值范围是▲16.实验室里,水平桌面上有甲、乙、丙三个圆柱形容器(容器足够高),底面半径之比为1:2:1,,用两个相同的管子在容器的5cm高度处连通(即管子底端离容器底5cm),现三个容器中,只有甲中有水,水位高1cm,如图所示。若每分钟同时向乙和丙注入相同量的水,开始注水1分钟,乙的水位上升4/2965cm,则开始注入▲分钟的水量后,甲与乙的水位高度之差是0.5cm三、解答题(本题有8小题,共80分)17.(本题8分)(1)计算:10)21(41)1(45cos2;(2)解不等式:53x≤)2(2x18.(本题8分)小敏上午8:00从家里出发,骑车去一家超市购物,然后从这家超市返回家中。小敏离家的路程y(米)和所经过的时间x(分)之间的函数图象如图所示。请根据图象回答下列问题:(1)小敏去超市途中的速度是多少?在超市逗留了多少时间?(2)小敏几点几分返回到家?5/2919.(本题8分)为了解某种电动汽车的性能,对这种电动汽车进行了抽检,将一次充电后行驶的里程数分为A,B,C,D四个等级,其中相应等级的里程依次为200千米,210千米,220千米,230千米,获得如下不完整的统计图。根据以上信息,解答下列问题:(1)问这次被抽检的电动汽车共有几辆?并补全条形统计图;(2)估计这种电动汽车一次充电后行驶的平均里程数为多少千米?20.(本题8分)如图,从地面上的点A看一山坡上的电线杆PQ,测得杆顶端点P的仰角是45°,向前走6m到达B点,测得杆顶端点P和杆底端点Q的仰角分别是60°和30°。(1)求∠BPQ的度数;(2)求该电线杆PQ的高度(结果精确到1m)。备用数据:7.13,4.126/2921.(本题10分)如果抛物线cbxaxy2过定点M(1,1),则称次抛物线为定点抛物线。(1)张老师在投影屏幕上出示了一个题目:请你写出一条定点抛物线的一个解析式。小敏写出了一个答案:4322xxy,请你写出一个不同于小敏的答案;(2)张老师又在投影屏幕上出示了一个思考题:已知定点抛物线122cbxxy,求该抛物线顶点纵坐标的值最小时的解析式,请你解答。22.(本题12分)某校规划在一块长AD为18m,宽AB为13m的长方形场地ABCD上,设计分别与AD,AB平行的横向通道和纵向通道,其余部分铺上草皮。(1)如图1,若设计三条通道,一条横向,两条纵向,且它们的宽度相等,其余六块草坪相同,其中一块草坪两边之比AM:AN=8:9,问通道的宽是多少?(2)为了建造花坛,要修改(1)中的方案,如图2,将三条通道改为两条通道,纵向的宽度改为横向宽度的2倍,其余四块草坪相同,且每一块草坪均有一边长为8m,这样能在这些草坪建造花坛。如图3,在草坪RPCQ中,已知RE⊥PQ于点E,CF⊥PQ于点F,求花坛RECF的面积。7/2923.(本题12分)正方形ABCD和正方形AEFG有公共顶点A,将正方形AEFG绕点A按顺时针方向旋转,记旋转角∠DAG=α,其中0°≤α≤180°,连结DF,BF,如图。(1)若α=0°,则DF=BF,请加以证明;(2)试画一个图形(即反例),说明(1)中命题的逆命题是假命题;(3)对于(1)中命题的逆命题,如果能补充一个条件后能使该逆命题为真命题,请直接写出你认为需要补充的一个条件,不必说明理由。8/2924.(本题14分)在平面直角坐标系中,O为原点,四边形OABC的顶点A在x轴的正半轴上,OA=4,OC=2,点P,点Q分别是边BC,边AB上的点,连结AC,PQ,点B1是点B关于PQ的对称点。(1)若四边形OABC为矩形,如图1,①求点B的坐标;②若BQ:BP=1:2,且点B1落在OA上,求点B1的坐标;(2)若四边形OABC为平行四边形,如图2,且OC⊥AC,过点B1作B1F∥x轴,与对角线AC、边OC分别交于点E、点F。若B1E:B1F=1:3,点B1的横坐标为m,求点B1的纵坐标,并直接写出m的取值范围。9/292015年浙江省义乌市中考数学试卷一、选择题(本题有10小题,每小题4分,共40分)1.计算3)1(的结果是A.-3B.-2C.2D.3【考点】有理数的乘法..【分析】根据有理数的乘法运算法则进行计算即可得解.【解答】解:(﹣1)×3=﹣1×3=﹣3.故选A.【点评】本题考查了有理数的乘法,是基础题,计算时要注意符号的处理.2.据报道,2015年第一季度,义乌电商实现交易额约为26000000000元,同比增长22%,将26000000000用科学计数法表示为A.2.6×1010B.2.6×1011C.26×1010D.0.26×1011【考点】科学记数法—表示较大的数..【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将26000000000用科学记数法表示为2.6×1010.故选:A.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.有6个相同的立方体搭成的几何体如图所示,则它的主视图是【考点】简单组合体的三视图..【分析】根据主视图是从正面看得到的图形,可得答案.【解答】解:从正面看第一层三个小正方形,第二层左边一个小正方形,右边一个小正方形.10/29故选:C.【点评】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.4.下面是一位同学做的四道题:①abba532;②6236)3(aa;③326aaa;④532aaa,其中做对的一道题的序号是A.①B.②C.③D.④【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方..【分析】①根据合并同类项,可判断①,②根据积的乘方,可得答案;③根据同底数幂的除法,可得答案;④根据同底数幂的乘法,可得答案.【解答】解:①不是同类项不能合并,故①错误;②积的乘方等于乘方的积,故②错误;③同底数幂的除法底数不变指数相减,故③错误;④同底数幂的乘法底数不变指数相加,故④正确;故选:D.【点评】本题考查了同底数幂的除法,熟记法则并根据法则计算是解题关键.5.在一个不透明的袋子中装有除颜色外其它均相同的3个红球和2个白球,从中任意摸出一个球,则摸出白球的概率是A.31B.52C.21D.53【考点】概率公式..【分析】由在一个不透明的袋子中装有除颜色外其它均相同的3个红球和2个白球,直接利用概率公式求解即可求得答案.【解答】解:∵在一个不透明的袋子中装有除颜色外其它均相同的3个红球和2个白球,∴从中任意摸出一个球,则摸出白球的概率是:=.故选B.【点评】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.11/296.化简xxx1112的结果是A.1xB.11xC.1xD.1xx【考点】分式的加减法..【专题】计算题.【分析】原式变形后,利用同分母分式的减法法则计算即可得到结果.【解答】解:原式=﹣===x+1.故选A【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.7.如图,小敏做了一个角平分仪ABCD,其中AB=AD,BC=DC,将仪器上的点A与∠PRQ的顶点R重合,调整AB和AD,使它们分别落在角的两边上,过点A,C画一条射线AE,AE就是∠PRQ的平分线。此角平分仪的画图原理是:根据仪器结构,可得△ABC≌△ADC,这样就有∠QAE=∠PAE。则说明这两个三角形全等的依据是A.SASB.ASAC.AASD.SSS【考点】全等三角形的应用..【分析】在△ADC和△ABC中,由于AC为公共边,AB=AD,BC=DC,利用SSS定理可判定△ADC≌△ABC,进而得到∠DAC=∠BAC,即∠QAE=∠PAE.【解答】解:在△ADC和△ABC中,,∴△ADC≌△ABC(SSS),∴∠DAC=∠BAC,12/29即∠QAE=∠PAE.故选:D.【点评】本题考查了全等三角形的应用;这种设计,用SSS判断全等,再运用性质,是全等三角形判定及性质的综合运用,做题时要认真读题,充分理解题意.8.如图,四边形ABCD是⊙O的内接四边形,⊙O的半径为2,∠B=135°,则的长A.2B.C.2D.3【考点】弧长的计算;圆周角定理;圆内接四边形的性质..【分析】连接OA、OC,然后根据圆周角定理求得∠AOC的度数,最后根据弧长公式求解.【解答】解:连接OA、OC,∵∠B=135°,∴∠D=180°﹣135°=45°,∴∠AOC=90°,则的长==π.故选B.【点评】本题考查了弧长的计算以及圆周角定理,解答本题的关键是掌握弧长公式L=.9.如果一种变换是将抛物线向右平移2个单位或向上平移1个单位,我们把这种13/29变换称为抛物线的简单变换。已知抛物线经过两次简单变换后的一条抛物线是12xy,则
本文标题:2015年浙江省义乌市中考数学试卷(含解析版)
链接地址:https://www.777doc.com/doc-11122862 .html