您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 2016年各地中考数学解析版试卷分类汇编(第一期):一元二次方程及其应用
一元二次方程及其应用一、选择题1.(2016·黑龙江大庆)若x0是方程ax2+2x+c=0(a≠0)的一个根,设M=1﹣ac,N=(ax0+1)2,则M与N的大小关系正确的为()A.M>NB.M=NC.M<ND.不确定【考点】一元二次方程的解.【分析】把x0代入方程ax2+2x+c=0得ax02+2x0=﹣c,作差法比较可得.【解答】解:∵x0是方程ax2+2x+c=0(a≠0)的一个根,∴ax02+2x0+c=0,即ax02+2x0=﹣c,则N﹣M=(ax0+1)2﹣(1﹣ac)=a2x02+2ax0+1﹣1+ac=a(ax02+2x0)+ac=﹣ac+ac=0,∴M=N,故选:B.【点评】本题主要考查一元二次方程的解得概念及作差法比较大小,熟练掌握能使方程成立的未知数的值叫做方程的解是根本,利用作差法比较大小是解题的关键.2.(2016·湖北黄冈)若方程3x2-4x-4=0的两个实数根分别为x1,x2,则x1+x2=A.-4B.3C.-34D.34【考点】一元二次方程根与系数的关系.若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=-ab,x1x2=ac,反过来也成立.【分析】根据一元二次方程根与系数的关系:两根之和等于一次项系数除以二次项系数的商的相反数,可得出x1+x2的值.【解答】解:根据题意,得x1+x2=-ab=34.故选:D.3.(2016·四川自贡)已知关于x的一元二次方程x2+2x﹣(m﹣2)=0有实数根,则m的取值范围是()A.m>1B.m<1C.m≥1D.m≤1【考点】根的判别式.【专题】探究型.【分析】根据关于x的一元二次方程x2+2x﹣(m﹣2)=0有实数根,可知△≥0,从而可以求得m的取值范围.【解答】解:∵关于x的一元二次方程x2+2x﹣(m﹣2)=0有实数根,∴△=b2﹣4ac=22﹣4×1×[﹣(m﹣2)]≥0,解得m≥1,故选C.【点评】本题考查根的判别式,解题的关键是明确当一元二次方程有实数根时,△≥0.4.(2016·新疆)一元二次方程x2﹣6x﹣5=0配方组可变形为()A.(x﹣3)2=14B.(x﹣3)2=4C.(x+3)2=14D.(x+3)2=4【考点】解一元二次方程-配方法.【分析】先把方程的常数项移到右边,然后方程两边都加上32,这样方程左边就为完全平方式.【解答】解:x2﹣6x﹣5=0,x2﹣6x=5,x2﹣6x+9=5+9,(x﹣3)2=14,故选:A.【点评】本题考查了利用配方法解一元二次方程ax2+bx+c=0(a≠0):先把二次系数变为1,即方程两边除以a,然后把常数项移到方程右边,再把方程两边加上一次项系数的一半.5.(2016·云南)一元二次方程x2﹣3x﹣2=0的两根为x1,x2,则下列结论正确的是()A.x1=﹣1,x2=2B.x1=1,x2=﹣2C.x1+x2=3D.x1x2=2【考点】根与系数的关系.【分析】根据根与系数的关系找出“x1+x2=﹣=3,x1•x2==﹣2”,再结合四个选项即可得出结论.【解答】解:∵方程x2﹣3x﹣2=0的两根为x1,x2,∴x1+x2=﹣=3,x1•x2==﹣2,∴C选项正确.故选C.【点评】本题考查了根与系数的关系,解题的关键是找出x1+x2=3,x1•x2=﹣2.本题属于基础题,难度不大,解决该题型题目时,根据根与系数的关系找出两根之和与两根之积是关键.6.(2016·四川乐山·3分)若t为实数,关于x的方程2420xxt的两个非负实数根为a、b,则代数式22(1)(1)ab的最小值是()A15()B16()C15()D16答案:A解析:依题意,得:4,2ababt22(1)(1)ab=222()()1abab=22()()21ababab=2(2)2(2)15tt=2215tt,又164(2)020tabt,得26t,所以,当t=2时,2215tt有最小值-15。7.(2016·四川凉山州·4分)已知x1、x2是一元二次方程3x2=6﹣2x的两根,则x1﹣x1x2+x2的值是()A.B.C.D.【考点】根与系数的关系.【分析】由x1、x2是一元二次方程3x2=6﹣2x的两根,结合根与系数的关系可得出x1+x2=﹣,x1•x2=﹣2,将其代入x1﹣x1x2+x2中即可算出结果.【解答】解:∵x1、x2是一元二次方程3x2=6﹣2x的两根,∴x1+x2=﹣=﹣,x1•x2==﹣2,∴x1﹣x1x2+x2=﹣﹣(﹣2)=.故选D.8.(2016·四川凉山州·4分)已知,一元二次方程x2﹣8x+15=0的两根分别是⊙O1和⊙O2的半径,当⊙O1和⊙O2相切时,O1O2的长度是()A.2B.8C.2或8D.2<O2O2<8【考点】圆与圆的位置关系;根与系数的关系.【分析】先解方程求出⊙O1、⊙O2的半径,再分两圆外切和两圆内切两种情况讨论求解.【解答】解:∵⊙O1、⊙O2的半径分别是方程x2﹣8x+15=0的两根,解得⊙O1、⊙O2的半径分别是3和5.∴①当两圆外切时,圆心距O1O2=3+5=8;②当两圆内切时,圆心距O1O2=5﹣2=2.故选C.9.(2016·广东广州)定义新运算,,若a、b是方程 x2-x+14m=0的两根,则 b*b-a*a的值为()A、0B、1C、2D、与m有关[难易]中等[考点]新定义运算,一元二次方程[解析] b*b-a*a=b(1-b)-a(1-a) =b-b2-a+a2,因为a,b为方程 x2-x+14m=0的两根,所以 a2-a+14m=0,化简得 a2-a=-14m,同理 b2-b=-14m,代入上式得原式= -(b2-b)+a2-a =-(-14m)+(-14m)=0[参考答案]A10.(2016·广东深圳)给出一种运算:对于函数nxy,规定1nnxy丿。例如:若函数4xy,则有34xy丿。已知函数3xy,则方程12丿y的解是()A.4,421xxB.2,221xxC.021xxD.32,3221xx答案:B考点:学习新知识,应用新知识解决问题的能力。解析:依题意,当3xy时,2'312yx,解得:2,221xx11.(2016年浙江省丽水市)下列一元二次方程没有实数根的是()A.x2+2x+1=0B.x2+x+2=0C.x2﹣1=0D.x2﹣2x﹣1=0【考点】根的判别式.【分析】求出每个方程的根的判别式,然后根据判别式的正负情况即可作出判断.【解答】解:A、△=22﹣4×1×1=0,方程有两个相等实数根,此选项错误;B、△=12﹣4×1×2=﹣7<0,方程没有实数根,此选项正确;C、△=0﹣4×1×(﹣1)=4>0,方程有两个不等的实数根,此选项错误;D、△=(﹣2)2﹣4×1×(﹣1)=8>0,方程有两个不等的实数根,此选项错误;故选:B.12.(2016年浙江省衢州市)已知关于x的一元二次方程x2﹣2x﹣k=0有两个不相等的实数根,则实数k的取值范围是()A.k≥1B.k>1C.k≥﹣1D.k>﹣1【考点】一元二次方程根的分布.【分析】根据判别式的意义得到△=(﹣2)2+4k>0,然后解不等式即可.【解答】解:∵关于x的一元二次方程x2﹣2x﹣k=0有两个不相等的实数根,∴△=(﹣2)2+4k>0,解得k>﹣1.故选:D.13.(2016年浙江省台州市)有x支球队参加篮球比赛,共比赛了45场,每两队之间都比赛一场,则下列方程中符合题意的是()A.x(x﹣1)=45B.x(x+1)=45C.x(x﹣1)=45D.x(x+1)=45【考点】由实际问题抽象出一元二次方程.【分析】先列出x支篮球队,每两队之间都比赛一场,共可以比赛x(x﹣1)场,再根据题意列出方程为x(x﹣1)=45.【解答】解:∵有x支球队参加篮球比赛,每两队之间都比赛一场,∴共比赛场数为x(x﹣1),∴共比赛了45场,∴x(x﹣1)=45,故选A.14.(2016·山东烟台)若x1,x2是一元二次方程x2﹣2x﹣1=0的两个根,则x12﹣x1+x2的值为()A.﹣1B.0C.2D.3【考点】根与系数的关系.【分析】由根与系数的关系得出“x1+x2=2,x1•x2=﹣1”,将代数式x12﹣x1+x2变形为x12﹣2x1﹣1+x1+1+x2,套入数据即可得出结论.【解答】解:∵x1,x2是一元二次方程x2﹣2x﹣1=0的两个根,∴x1+x2=﹣=2,x1•x2==﹣1.x12﹣x1+x2=x12﹣2x1﹣1+x1+1+x2=1+x1+x2=1+2=3.故选D.15.(2016·山东枣庄)已知关于x的方程230xxa有一个根为-2,则另一个根为A.5B.-1C.2D.-5【答案】B.【解析】试题分析:设方程的里一个根为b,根据一元二次方程根与系数的关系可得-2+b=-3,解得b=-1,故答案选B.考点:一元二次方程根与系数的关系.16.(2016·山东枣庄)若关于x的一元二次方程2210xxkb有两个不相等的实数根,则一次函数ykxb的图象可能是【答案】B.考点:根的判别式;一次函数的性质.17.(2016.山东省青岛市,3分)输入一组数据,按下列程序进行计算,输出结果如表:x20.520.620.720.820.9输出﹣13.75﹣8.04﹣2.313.449.21分析表格中的数据,估计方程(x+8)2﹣826=0的一个正数解x的大致范围为()A.20.5<x<20.6B.20.6<x<20.7C.20.7<x<20.8D.20.8<x<20.9【考点】估算一元二次方程的近似解.【分析】根据表格中的数据,可以知道(x+8)2﹣826的值,从而可以判断当(x+8)2﹣826=0时,x的所在的范围,本题得以解决.【解答】解:由表格可知,当x=20.7时,(x+8)2﹣826=﹣2.31,当x=20.8时,(x+8)2﹣826=3.44,故(x+8)2﹣826=0时,20.7<x<20.8,故选C.18.(2016.山东省泰安市,3分)一元二次方程(x+1)2﹣2(x﹣1)2=7的根的情况是()A.无实数根B.有一正根一负根C.有两个正根D.有两个负根【分析】直接去括号,进而合并同类项,求出方程的根即可.【解答】解:∵(x+1)2﹣2(x﹣1)2=7,∴x2+2x+1﹣2(x2﹣2x+1)=7,整理得:﹣x2+6x﹣8=0,则x2﹣6x+8=0,(x﹣4)(x﹣2)=0,解得:x1=4,x2=2,故方程有两个正根.故选:C.【点评】此题主要考查了一元二次方程的解法,正确利用完全平方公式计算是解题关键.19.(2016.山东省泰安市,3分)当x满足时,方程x2﹣2x﹣5=0的根是()A.1±B.﹣1C.1﹣D.1+【分析】先求出不等式组的解,再求出方程的解,根据范围即可确定x的值.【解答】解:,解得:2<x<6,∵方程x2﹣2x﹣5=0,∴x=1±,∵2<x<6,∴x=1+.故选D.【点评】本题考查解一元一次不等式、一元二次方程的解等知识,熟练掌握不等式组以及一20.(2016.山东省威海市,3分)已知x1,x2是关于x的方程x2+ax﹣2b=0的两实数根,且x1+x2=﹣2,x1•x2=1,则ba的值是()A.B.﹣C.4D.﹣1【考点】根与系数的关系.【分析】根据根与系数的关系和已知x1+x2和x1•x2的值,可求a、b的值,再代入求值即可.【解答】解:∵x1,x2是关于x的方程x2+ax﹣2b=0的两实数根,∴x1+x2=﹣a=﹣2,x1•x2=﹣2b=1,解得a=2,b=﹣,∴ba=(﹣)2=.故选:A.21.(2016•浙江省舟山)一元二次方程2x2﹣3x+1=0根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根【考点】根的判别式.【分析】先求出△的值,再根据△>0⇔方程有两个不相等的实数根;△=0⇔方程有两个相等的实数;△<0⇔方程没有实数根,进行判断即可.【解
本文标题:2016年各地中考数学解析版试卷分类汇编(第一期):一元二次方程及其应用
链接地址:https://www.777doc.com/doc-11123381 .html