您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 2014年陕西高考理科数学试题及答案
112014年陕西省高考数学试卷(理科)一、选择题,在每小题给出的四个选项中,只有一项符合题目要求(共10小题,每小题5分,满分50分)1.(5分)(2014•陕西)设集合M={x|x≥0,x∈R},N={x|x2<1,x∈R},则M∩N=()A.[0,1]B.[0,1)C.(0,1]D.(0,1)2.(5分)(2014•陕西)函数f(x)=cos(2x﹣)的最小正周期是()A.B.πC.2πD.4π3.(5分)(2014•陕西)定积分(2x+ex)dx的值为()A.e+2B.e+1C.eD.e﹣14.(5分)(2014•陕西)根据如图框图,对大于2的正数N,输出的数列的通项公式是()A.an=2nB.an=2(n﹣1)C.an=2nD.an=2n﹣15.(5分)(2014•陕西)已知底面边长为1,侧棱长为的正四棱柱的各顶点均在同一球面上,则该球的体积为()A.B.4πC.2πD.6.(5分)(2014•陕西)从正方形四个顶点及其中心这5个点中,任取2个点,则这2个点的距离不小于该正方形边长的概率为()A.B.C.D.7.(5分)(2014•陕西)下列函数中,满足“f(x+y)=f(x)f(y)”的单调递增函数是()A.f(x)=xB.f(x)=x3C.f(x)=()xD.f(x)=3x228.(5分)(2014•陕西)原命题为“若z1,z2互为共轭复数,则|z1|=|z2|”,关于其逆命题,否命题,逆否命题真假性的判断依次如下,正确的是()A.真,假,真B.假,假,真C.真,真,假D.假,假,假9.(5分)(2014•陕西)设样本数据x1,x2,…,x10的均值和方差分别为1和4,若yi=xi+a(a为非零常数,i=1,2,…,10),则y1,y2,…,y10的均值和方差分别为()A.1+a,4B.1+a,4+aC.1,4D.1,4+a10.(5分)(2014•陕西)如图,某飞行器在4千米高空飞行,从距着陆点A的水平距离10千米处开始下降,已知下降飞行轨迹为某三次函数图象的一部分,则该函数的解析式为()A.y=﹣xB.y=x3﹣xC.y=x3﹣xD.y=﹣x3+x二、填空题(考生注意:请在15、16、17三题中任选一题作答,如果多做,则按所做的第一题评分,共4小题,每小题5分,满分20分)11.(5分)(2014•陕西)已知4a=2,lgx=a,则x=_________.12.(5分)(2014•陕西)若圆C的半径为1,其圆心与点(1,0)关于直线y=x对称,则圆C的标准方程为_________.13.(5分)(2014•陕西)设0<θ<,向量=(sin2θ,cosθ),=(cosθ,1),若∥,则tanθ=_________.14.(5分)(2014•陕西)观察分析下表中的数据:多面体面数(F)顶点数(V)棱数(E)三棱柱569五棱锥6610立方体6812猜想一般凸多面体中F,V,E所满足的等式是_________.(不等式选做题)15.(5分)(2014•陕西)设a,b,m,n∈R,且a2+b2=5,ma+nb=5,则的最小值为_________.(几何证明选做题)16.(2014•陕西)如图,△ABC中,BC=6,以BC为直径的半圆分别交AB、AC于点E、F,若AC=2AE,则EF=_________.33(坐标系与参数方程选做题)17.(2014•陕西)在极坐标系中,点(2,)到直线ρsin(θ﹣)=1的距离是_________.三、解答题:解答题应写出文字说明、证明过程或盐酸步骤(共6小题,满分75分)18.(12分)(2014•陕西)△ABC的内角A,B,C所对应的边分别为a,b,c.(Ⅰ)若a,b,c成等差数列,证明:sinA+sinC=2sin(A+C);(Ⅱ)若a,b,c成等比数列,求cosB的最小值.19.(12分)(2014•陕西)如图1,四面体ABCD及其三视图(如图2所示),过棱AB的中点E作平行于AD,BC的平面分别交四面体的棱BD,DC,CA于点F,G,H.(Ⅰ)证明:四边形EFGH是矩形;(Ⅱ)求直线AB与平面EFGH夹角θ的正弦值.20.(12分)(2014•陕西)在直角坐标系xOy中,已知点A(1,1),B(2,3),C(3,2),点P(x,y)在△ABC三边围成的区域(含边界)上.(Ⅰ)若++=,求||;(Ⅱ)设=m+n(m,n∈R),用x,y表示m﹣n,并求m﹣n的最大值.21.(12分)(2014•陕西)在一块耕地上种植一种作物,每季种植成本为1000元,此作物的市场价格和这块地上的产量均具有随机性,且互不影响,其具体情况如下表:作物产量(kg)300500概率0.50.5作物市场价格(元/kg)610概率0.40.6(Ⅰ)设X表示在这块地上种植1季此作物的利润,求X的分布列;(Ⅱ)若在这块地上连续3季种植此作物,求这3季中至少有2季的利润不少于2000元的概率.4422.(13分)(2014•陕西)如图,曲线C由上半椭圆C1:+=1(a>b>0,y≥0)和部分抛物线C2:y=﹣x2+1(y≤0)连接而成,C1与C2的公共点为A,B,其中C1的离心率为.(Ⅰ)求a,b的值;(Ⅱ)过点B的直线l与C1,C2分别交于点P,Q(均异于点A,B),若AP⊥AQ,求直线l的方程.23.(14分)(2014•陕西)设函数f(x)=ln(1+x),g(x)=xf′(x),x≥0,其中f′(x)是f(x)的导函数.(Ⅰ)令g1(x)=g(x),gn+1(x)=g(gn(x)),n∈N+,求gn(x)的表达式;(Ⅱ)若f(x)≥ag(x)恒成立,求实数a的取值范围;(Ⅲ)设n∈N+,比较g(1)+g(2)+…+g(n)与n﹣f(n)的大小,并加以证明.552014年陕西省高考数学试卷(理科)参考答案与试题解析一、选择题,在每小题给出的四个选项中,只有一项符合题目要求(共10小题,每小题5分,满分50分)1.(5分)考点:交集及其运算.菁优网版权所有专题:集合.分析:先解出集合N,再求两集合的交即可得出正确选项.解答:解:∵M={x|x≥0,x∈R},N={x|x2<1,x∈R}={x|﹣1<x<1,x∈R},∴M∩N=[0,1).故选B.点评:本题考查交的运算,理解好交的定义是解答的关键.2.(5分)考点:三角函数的周期性及其求法.菁优网版权所有专题:三角函数的图像与性质.分析:由题意得ω=2,再代入复合三角函数的周期公式求解.解答:解:根据复合三角函数的周期公式得,函数f(x)=cos(2x﹣)的最小正周期是π,故选B.点评:本题考查了三角函数的周期性,以及复合三角函数的周期公式应用,属于基础题.3.(5分)考点:定积分.菁优网版权所有专题:导数的概念及应用.分析:根据微积分基本定理计算即可解答:解:(2x+ex)dx=(x2+ex)=(1+e)﹣(0+e0)=e.故选:C.点评:本题主要考查了微积分基本定理,关键是求出原函数.4.(5分)考点:程序框图.菁优网版权所有专算法和程序框图.66题:分析:根据框图的流程判断递推关系式,根据递推关系式与首项求出数列的通项公式.解答:解:由程序框图知:ai+1=2ai,a1=2,∴数列为公比为2的等边数列,∴an=2n.故选:C.点评:本题考查了直到型循环结构的程序框图,根据框图的流程判断递推关系式是解答本题的关键.5.(5分)考点:球的体积和表面积.菁优网版权所有专题:计算题;空间位置关系与距离.分析:由长方体的对角线公式,算出正四棱柱体对角线的长,从而得到球直径长,得球半径R=1,最后根据球的体积公式,可算出此球的体积.解答:解:∵正四棱柱的底面边长为1,侧棱长为,∴正四棱柱体对角线的长为=2又∵正四棱柱的顶点在同一球面上,∴正四棱柱体对角线恰好是球的一条直径,得球半径R=1根据球的体积公式,得此球的体积为V=πR3=π.故选:D.点评:本题给出球内接正四棱柱的底面边长和侧棱长,求该球的体积,考查了正四棱柱的性质、长方体对角线公式和球的体积公式等知识,属于基础题.6.(5分)考点:列举法计算基本事件数及事件发生的概率.菁优网版权所有专题:应用题;概率与统计;排列组合.分析:设正方形边长为1,则从正方形四个顶点及其中心这5个点中任取2个点,共有10条线段,4条长度为1,4条长度为,两条长度为,即可得出结论.解答:解:设正方形边长为1,则从正方形四个顶点及其中心这5个点中任取2个点,共有10条线段,4条长度为1,4条长度为,两条长度为,∴所求概率为=.故选:C.点评:本题考查概率的计算,列举基本事件是关键.7.(5分)考点:抽象函数及其应用.菁优网版权所有专题:函数的性质及应用.分析:对选项一一加以判断,先判断是否满足f(x+y)=f(x)f(y),然后考虑函数的单调性,即可得到答案.解答:解:A.f(x)=,f(y)=,f(x+y)=,不满足f(x+y)=f(x)f(y),故A错;77B.f(x)=x3,f(y)=y3,f(x+y)=(x+y)3,不满足f(x+y)=f(x)f(y),故B错;C.f(x)=,f(y)=,f(x+y)=,满足f(x+y)=f(x)f(y),但f(x)在R上是单调减函数,故C错.D.f(x)=3x,f(y)=3y,f(x+y)=3x+y,满足f(x+y)=f(x)f(y),且f(x)在R上是单调增函数,故D正确;故选D.点评:本题主要考查抽象函数的具体模型,同时考查幂函数和指数函数的单调性,是一道基础题.8.(5分)考点:四种命题.菁优网版权所有专题:阅读型;简易逻辑.分析:根据共轭复数的定义判断命题的真假,根据逆命题的定义写出逆命题并判断真假,再利用四种命题的真假关系判断否命题与逆否命题的真假.解答:解:根据共轭复数的定义,命题“若z1,z2互为共轭复数,则|z1|=|z2|”是真命题;其逆命题是:“若|z1|=|z2|,则z1,z2互为共轭复数”,例|1|=|﹣1|,而1与﹣1不是互为共轭复数,∴逆命题是假命题;根据否命题与逆命题是互为逆否命题,命题与其逆否命题同真同假,∴命题的否命题是假命题;逆否命题是真命题.故选:B.点评:本题考查了四种命题的定义及真假关系,考查了共轭复数的定义,熟练掌握四种命题的真假关系是解题的关键.9.(5分)考点:极差、方差与标准差;众数、中位数、平均数.菁优网版权所有专题:概率与统计.分析:方法1:根据变量之间均值和方差的关系直接代入即可得到结论.方法2:根据均值和方差的公式计算即可得到结论.解答:解:方法1:∵yi=xi+a,∴E(yi)=E(xi)+E(a)=1+a,方差D(yi)=D(xi)+E(a)=4.方法2:由题意知yi=xi+a,则=(x1+x2+…+x10+10×a)=(x1+x2+…+x10)=+a=1+a,方差s2=[(x1+a﹣(+a)2+(x2+a﹣(+a)2+…+(x10+a﹣(+a)2]=[(x1﹣)2+(x2﹣)2+…+(x10﹣)2]=s2=4.故选:A.点评:本题主要考查样本数据的均值和方差之间的关系,若变量y=ax+b,则Ey=aEx+b,Dy=a2Dx,利用公式比较简单或者使用均值和方差的公式进行计算.10.(5分)考点:导数的几何意义;函数解析式的求解及常用方法.菁优网版权所有专题:函数的性质及应用;导数的概念及应用.分分别求出四个选项中的导数,验证在x=±5处的导数为0成立与否,即可得出函数的解析式.88析:解答:解:由题意可得出,此三次函数在x=±5处的导数为0,下依次特征寻找正确选项:A选项,导数为,令其为0解得x=±5,故A正确;B选项,导数为,令其为0解得x=±5不成立,故B错;C选项,导数为,令其为0解得x=±5不成立,故C错;D选项,导数为,令其为0解得x=±5不成立,故D错.故A.点评:本题考查导数的几何意义,导数几何意义是导数的重要应用.二、填空题(考生注意:请在15、16、17三题中任选一题作答,如果多做,则按所做的第一题评分,共4小题,每小题5分,满分20分)11.(5分)考点:对数的运算性质.菁优网版权所有专题:
本文标题:2014年陕西高考理科数学试题及答案
链接地址:https://www.777doc.com/doc-11158074 .html