您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 企业财务 > 08第八章计量经济学
Economics20-Prof.Anderson1多元回归分析y=b0+b1x1+b2x2+...bkxk+u6.异方差性Economics20-Prof.Anderson2异方差性的定义回顾同方差性的假定暗含在解释变量条件下无法观测到的误差u的方差为常数如果这一假定不能满足,即如果对于x的不同值来说u的方差是不同的,那么该误差具有异方差性例子:估计教育的回报如果能力是无法观测到的,那么我们认为能力的方差依据获得教育程度的不同而不同Economics20-Prof.Anderson3.xx1x2f(y|x)异方差性的例子x3..E(y|x)=b0+b1xEconomics20-Prof.Anderson4为什么我们担心异方差性?即使我们不能假定同方差性,普通最小二乘估计量仍是无偏估计量和一致估计量如果我们有异方差,那么普通最小二乘估计值的标准误差是有偏的如果标准误差是有偏的,那么我们不能使用通常的t统计量或F统计量或LM统计量来得出推断Economics20-Prof.Anderson5具有异方差性的方差对于简单回归的情形来说,b1=b1+—————因此Var(b1)=—————,其中SSTx=∑(xi-x)2当si2≠s2时,Var(b1)的一个有效估计量是—————,其中ui是普通最小二乘残差^∑(xi-x)ui_∑(xi-x)2_^∑(xi-x)2si2_SSTx2_^∑(xi-x)2ui2_SSTx2^^Economics20-Prof.Anderson6具有异方差性的方差(续)对于一般多元回归模型来说,具有异方差性的Var(bj)的一个有效估计量是Var(bj)=—————其中rij是将xi对所有其他自变量进行回归所得到的第i个残差,SSRj是从该回归中得到的残差平方和^^^∑rij2ui2^^SSRj2^Economics20-Prof.Anderson7稳健标准误差既然我们有方差的一个一致性估计值,那么我们能用它的平方根作为用于推断的一个标准误差通常,我们称这些为稳健标准误差有时,通过乘以n/(n–k–1)我们将方差的估计值做自由度的校正但是,当n→∞时,校正与否是相同的。Economics20-Prof.Anderson8稳健标准误差(续)重要的是要记住这些稳健标准误差只有渐近性质,即由稳健标准误差形成的小样本容量的t统计量的分布将不会接近t分布,并且推断将是错误的在Stata中,我们通过使用回归的稳健选项很容易获得稳健标准误差Economics20-Prof.Anderson9一个稳健LM统计量运行受约束模型的普通最小二乘法估计,并保存残差u将每一个被排除的变量对所有被包括的变量进行回归(q个不同的回归)并保存每组的残差r1,r2,…,rq将一个被定义为1的变量对r1u,r2u,…,rqu进行回归,具有零截距LM统计量是n–SSR1,其中SSR1是从这个最后的回归中得到的残差平方和~~~~~~~~~~Economics20-Prof.Anderson10检验异方差性我们本来想要检验H0:Var(u|x1,x2,…,xk)=s2,它等同于H0:E(u2|x1,x2,…,xk)=E(u2)=s2如果我们假定u2和xj之间的关系将是线性的,那么我们能把它当作一个线性约束进行检验因此,对于u2=d0+d1x1+…+dkxk+v来说,这意味检验H0:d1=d2=…=dk=0Economics20-Prof.Anderson11Breusch-Pagan检验虽然我们无法观测到误差,但是我们能通过从普通最小二乘回归中得到的残差对它进行估计在我们将该残差平方对所有的x进行回归后,我们能用R2来构造一个F或LM检验构造的F统计量只是对回归的整体显著性进行报告的F统量,F=[R2/k]/[(1–R2)/(n–k–1)],它服从Fk,n–k-1分布构造的LM统计量是LM=nR2,它服从c2k分布Economics20-Prof.Anderson12怀特检验Breusch-Pagan检验将发现异方差性的任何线性形式怀特检验容许通过使用所有x的平方以及x间的交叉乘积而产生的非线性我们仍然仅仅使用一个F或LM来检验所有的xj,xj2以及xjxh是否都具有联合显著性这个操作可能是繁琐的Economics20-Prof.Anderson13怀特检验的对立形式我们认为从普通最小二乘法中得到的拟合值ŷ是所有x的一个函数因此ŷ2将是所有x的平方,x间的交叉乘积以及ŷ的一个函数,并且ŷ2能代理所有的xj,xj2,和xjxh于是,将残差平方对ŷ和ŷ2进行回归并且使用R2来构造一个F或LM统计量注意现在仅检验两个约束Economics20-Prof.Anderson14加权最小二乘法虽然估计普通最小二乘估计量的稳健标准误差总是可能的,但是如果我们了解一些关于异方差的明确形式的信息,那么我们就能得到比普通最小二乘估计值更有效的估计值该方法的基本思想是将具有异方差的模型转化成具有同方差的模型–该方法被称为加权最小二乘法Economics20-Prof.Anderson15以一种已知的乘积常量形式表示的异方差的情形假设我们能将异方差用模型表示为Var(u|x)=s2h(x),其中令h(x)≡hi因为hi只是x的一个函数,所以E(ui/√hi|x)=0因为我们知道Var(u|x)=s2hi,所以Var(ui/√hi|x)=s2因此,如果将整个方程式除以√hi那么我们就有一个误差是同方差的模型Economics20-Prof.Anderson16广义最小二乘法估计普通最小二乘法的变换方程是广义最小二乘法(GLS)的一个例子在该情形下,广义最小二乘估计量将是最优线性无偏估计量广义最小二乘法采用加权最小二乘法(WLS)的做法,其中每个残差平方的权重是Var(ui|xi)的倒数Economics20-Prof.Anderson17加权最小二乘法尽管我们从直觉上了解对一个已转换的方程求普通最小二乘估计量是合适的,但是做这种转换是繁琐的加权最小二乘法是不需要对方程进行转换就能得到相同结果的一种方法其思想是最小化加权平方和(权重为1/hi)Economics20-Prof.Anderson18关于加权最小二乘法的更多内容如果我们知道Var(ui|xi),那么我们就采用加权最小二乘法在大多数情形下,我们不知道异方差的形式例如:如果数据是集合数据,而模型是个体水平,我们对数据该怎么处理我们想将每个集合观测值乘以个体编号的倒数Economics20-Prof.Anderson19可行的广义最小二乘估计量较为典型的情形是我们不知道异方差的形式在这种情形下,我们需要估计h(xi)通常,我们以一个相当可行的模型的假定开始,如Var(u|x)=s2exp(d0+d1x1+…+dkxk)因为我们不知道d,所以我们必须对它进行估计Economics20-Prof.Anderson20可行的广义最小二乘估计量(续)我们的假定暗含u2=s2exp(d0+d1x1+…+dkxk)v其中如果E(v)=1,那么E(v|x)=1ln(u2)=a0+d1x1+…+dkxk+e其中E(e)=1并且e独立于x现在,我们知道û是u的一个估计值,因此我们能通过普通最小二乘法来估计出ûEconomics20-Prof.Anderson21可行的广义最小二乘估计量(续)现在,我们获得h的一个估计值ĥ=exp(ĝ),并且它的倒数就是我们的权重于是,我们该怎样做?运行原始的普通最小二乘模型,保存残差û,对他们求平方并取对数将ln(û2)对所有的自变量进行回归并且得到拟合值ĝ使用1/exp(ĝ)作为权重来进行加权最小二乘法Economics20-Prof.Anderson22加权最小二乘法当我们用加权最小二乘法来做F检验的时候,我们要从无约束模型中形成权重并且使用那些权重分别对受约束的模型和无约束模型实行加权最小二乘法记住我们使用加权最小二乘估计量只是为了有效性–普通最小二乘估计量仍然是无偏的和一致的由于抽样误差的不同,估计值仍将是不同的,但是如果估计值的差异很大那么某个高斯-马尔科夫假定不能满足是有可能的
本文标题:08第八章计量经济学
链接地址:https://www.777doc.com/doc-1117088 .html