您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 精品解析:江苏省宿迁市2021年中考数学真题(原卷版)
宿迁市2021年初中学业水平考试注意事项:1.本试卷共6页,全卷满分120分,考试时间为120分钟,考生答题全部答在答题卡上,答在本试卷上无效.2.请认真核对监考教师在答题卡上所粘贴条形码的姓名、考试证号是否与本人相符合,再将自己的姓名﹑考试证号用0.5毫米黑色墨水签字笔填写在答题卡及本试卷上.3.答选择题必须用2B铅笔将答题卡上对应的答案标号涂黑,如需改动,请用橡皮擦干净后,再选涂其他答案,答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡上的指定位置,在其他位置答题一律无效.4.作图必须用2B铅笔作答,并请加黑加粗,描写清楚.一、选择题(本大题共8小题,每小题3分,共24分,在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.﹣3的相反数为()A.﹣3B.﹣13C.13D.32.对称美是美的一种重要形式,它能给与人们一种圆满、协调和平的美感,下列图形属于中心对称图形的是()A.B.C.D.3.下列运算正确的是()A.22aaB.326aaC.236aaaD.22abab4.已知一组数据:4,3,4,5,6,则这组数据的中位数是()A.3B.3.5C.4D.4.55.如图,在△ABC中,∠A=70°,∠C=30°,BD平分∠ABC交AC于点D,DE∥AB,交BC于点E,则∠BDE的度数是()A.30°B.40°C.50°D.60°6.已知双曲线ky(0)kx过点(3,1y)、(1,2 y)、(-2,3y),则下列结论正确的是()A.312yyy>>B.321yyy>>C.213yyy>>D.231yyy>>7.折叠矩形纸片ABCD,使点B落在点D处,折痕为MN,已知AB=8,AD=4,则MN的长是()A.553B.25C.753D.458.已知二次函数2yaxbxc的图像如图所示,有下列结论:①0a>;②24bac>0;③40ab;④不等式21axbxc()<0的解集为1≤x<3,正确的结论个数是()A.1B.2C.3D.4二、填空题(本大题共10小题,每小题3分,共30分,不需写出解答过程,请把答案直接填写在答题卡相应位置上)9.若代数式22x+有意义,则x的取值范围是____________.10.2021年4月,白鹤滩水电站正式开始蓄水,首批机组投产发电开始了全国冲刺,该电站建成后,将仅次于三峡水电站成为我国第二大水电站,每年可减少二氧化碳排放51600000吨,减碳成效显著,对促进我市实现碳中和目标具有重要作用,51600000用科学计数法表示为___________.11.分解因式:2axa=____12.方程22142xxx的解是_____________.13.已知圆锥的底面圆半径为4,侧面展开图扇形的圆心角为120°,则它的侧面展开图面积为_____________.14.《九章算术》中有一道“引葭赴岸”问题:“仅有池一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐.问水深,葭长各几何?”题意是:有一个池塘,其地面是边长为10尺的正方形,一棵芦苇AB生长在它的中央,高出水面部分BC为1尺.如果把芦苇沿与水池边垂直的方向拉向岸边,那么芦苇的顶部B恰好碰到岸边的B'(示意图如图,则水深为__尺.15.如图,在Rt△ABC中,∠ABC=90°,∠A=32°,点B、C在O上,边AB、AC分别交O于D、E两点﹐点B是CD的中点,则∠ABE=__________.16.如图,点A、B在反比例函数ky0xx>的图像上,延长AB交x轴于C点,若△AOC的面积是12,且点B是AC的中点,则k=__________.17.如图,在△ABC中,AB=4,BC=5,点D、E分别在BC、AC上,CD=2BD,CF=2AF,BE交AD于点F,则△AFE面积的最大值是_________.三、简答题(本大题共10小题,共96分,请在答题卡指定区域内作答,解答时应写出必要的文字说明,证明过程或演算步骤)18.计算:0π184sin45°19.解不等式组105212xxx,并写出满足不等式组的所有整数解.20.某机构为了解宿迁市人口年龄结构情况,对宿迁市的人口数据进行随机抽样分析,绘制了如下尚不完整的统计图表:类别ABCD年龄(t岁)0≤t1515≤t6060≤t65t≥65人数(万人)4.711.6m2.7根据以上信息解答下列问题:(1)本次抽样调查,共调查了____万人;(2)请计算统计表中m的值以及扇形统计图中“C”对应的圆心角度数;(3)宿迁市现有人口约500万人,请根据此次抽查结果,试估计宿迁市现有60岁及以上的人口数量.21.在①AE=CF;②OE=OF;③BE∥DF这三个条件中任选一个补充在下面横线上,并完成证明过程.已知,如图,四边形ABCD是平行四边形,对角线AC、BD相交于点O,点E、F在AC上,(填写序号).求证:BE=DF.注:如果选择多个条件分别解答,按第一个解答计分.22.即将举行的2022年杭州亚运会吉祥物“宸宸”、“琮琮”、“莲莲”:将三张正面分别印有以上3个吉祥物图案的卡片(卡片的形状、大小、质地都相同)背面朝上、洗匀.(1)若从中任意抽取1张,抽得得卡片上的图案恰好为“莲莲”的概率是.(2)若先从中任意抽取1张,记录后放回,洗匀,再从中任意抽取1张,求两次抽取的卡片图案相同的概率.(请用树状图或列表的方法求解)23.一架无人机沿水平直线飞行进行测绘工作,在点P处测得正前方水平地面上某建筑物AB的顶端A的俯角为30°,面向AB方向继续飞行5米,测得该建筑物底端B的俯角为45°,已知建筑物AB的高为3米,求无人机飞行的高度(结果精确到1米,参考数据:21.414,3=1.732).24.如图,在Rt△AOB中,∠AOB=90°,以点O为圆心,OA为半径的圆交AB于点C,点D在边OB上,且CD=BD.(1)判断直线CD与圆O的位置关系,并说明理由;(2)已知24tan7DOC,AB=40,求O的半径.25.一辆快车从甲地驶往乙地,一辆慢车从乙地驶往甲地,两车同时出发,匀速行驶,两车在途中相遇时,快车恰巧出现故障,慢车继续驶往甲地,快车维修好后按原速继续行驶乙地,两车到达各地终点后停止,两车之间的距离s(km)与慢车行驶的时间t(h)之间的关系如图:(1)快车的速度为km/h,C点的坐标为.(2)慢车出发多少小时候,两车相距200km.26.已知正方形ABCD与正方形AEFG,正方形AEFG绕点A旋转一周.(1)如图①,连接BG、CF,求CFBG的值;(2)当正方形AEFG旋转至图②位置时,连接CF、BE,分别去CF、BE的中点M、N,连接MN、试探究:MN与BE的关系,并说明理由;(3)连接BE、BF,分别取BE、BF的中点N、Q,连接QN,AE=6,请直接写出线段QN扫过的面积.27.如图,抛物线21y2xbxc与x轴交于A(-1,0),B(4,0),与y轴交于点C.连接AC,BC,点P在抛物线上运动.(1)求抛物线的表达式;(2)如图①,若点P在第四象限,点Q在PA的延长线上,当∠CAQ=∠CBA45°时,求点P的坐标;(3)如图②,若点P在第一象限,直线AP交BC于点F,过点P作x轴的垂线交BC于点H,当△PFH为等腰三角形时,求线段PH的长.
本文标题:精品解析:江苏省宿迁市2021年中考数学真题(原卷版)
链接地址:https://www.777doc.com/doc-11184973 .html