您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 专题10 二次函数的图像、性质和应用(原卷板)
一、选择题1.(毕节)抛物线2221y2xy2xyx2,,共有的性质是【】A.开口向下B.对称轴是y轴C.都有最低点D.y随x的增大而减小2.(黔东南)已知抛物线y=x2﹣x﹣1与x轴的一个交点为(m,0),则代数式m2﹣m+2014的值为【】A.2012B.2013C.2014D.20153.(黔东南)如图,已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列4个结论:①abc<0;②b<a+c;③4a+2b+c>0;④b2﹣4ac>0其中正确结论的有【】A.①②③B.①②④C.①③④D.②③④[来源:学科网ZXXK]4.(河北)某种正方形合金板材的成本y(元)与它的面积成正比,设边长为x厘米,当x=3时,y=18,那么当成本为72元时,边长为【】A、6厘米B、12厘米C、24厘米D、36厘米5.(十堰)已知抛物线y=ax2+bx+c(a≠0)经过点(1,1)和(﹣1,0).下列结论:①a﹣b+c=0;②b2>4ac;③当a<0时,抛物线与x轴必有一个交点在点(1,0)的右侧;④抛物线的对称轴为x=14a.其中结论正确的个数有【】A.4个B.3个C.2个D.1个6.(孝感)抛物线2yaxbxc的顶点为D1,2,与x轴的一个交点A在点3,0\和2,0之间,其部分图象如图所示,则以下结论:①2b4ac0;②abc0;③ca2;④方程2axbxc20有两个相等的实数根,其中正确结论的个数为【】A.1个B.2个C.3个D.4个7.(潍坊)如图,已知矩形ABCD的长AB为5,宽BC为4.E是BC边上的一个动点,AE⊥EF,EF交CD于点F.设BE=x,FC=y,则点E从点B运动到点C时,能表示y关于x的函数关系的大致图象是()8.(上海)如果将抛物线y=x2向右平移1个单位,那么所得的抛物线的表达式是().(A)y=x2-1;(B)y=x2+1;(C)y=(x-1)2;(D)y=(x+1)2.9.(天津)已知二次函数2yaxbxca0的图象如下图所示,且关于x的一元二次方程2axbxcm0没有实数根,有下列结论:①2b4ac0;②abc0;③m2.其中,正确结论的个数是【】(A)0(B)1(C)2(D)310.(新疆、兵团)对于二次函数2yx12的图象,下列说法正确的是【】A.开口向下B.对称轴是x1C.顶点坐标是(1,2)D.与x轴有两个交点11.(金华)如图是二次函数2yx2x4的图象,使y1成立的x的取值范围是【】A.1x3B.x1C.x1D.x1或x312.(舟山)当-2≤x≤l时,二次函数22yxmm1有最大值4,则实数m的值为【】(A)74(B)3或3(c)2或3(D)2或3或74二、填空题1.(珠海)如图,对称轴平行于y轴的抛物线与x轴交于(1,0),(3,0)两点,則它的对称轴为▲.2.(河南)已知抛物线y=ax2+bx+c(a≠0)与x轴交于A、B两点.若点A的坐标为(-2,0),抛物线的对称轴为直线x=2.则线段AB的长为▲.3.(南京)已知二次函数2yaxbxc中,函数y与x的部分对应值如下:x...-10123...y...[105212[...则当y5时,x的取值范围是▲.4.(扬州)如图,抛物线2yaxbxc(a0)的对称轴是过点(1,0)且平行于y轴的直线,若点P(4,0)在抛物线上,则4a2bc的值_____________.5.(天津)抛物线2yx2x3的顶点坐标是▲.三、解答题1.(福州)(满分14分)如图,抛物线21yx312与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,顶点为D.(1)求点A,B,D的坐标;(2)连接CD,过原点O作OE⊥CD,垂足为H,OE与抛物线的对称轴交于点E,连接AE,AD.求证:∠AEO=∠ADC;(3)以(2)中的点E为圆心,1为半径画圆,在对称轴右侧的抛物线上有一动点P,过点P作⊙O的切线,切点为Q,当PQ的长最小时,求点P的坐标,并直接写出点Q的坐标.2.(梅州)(本题满分11分)如图,已知抛物线233yxx384与x轴的交点为A、D(A在D的右侧),与y轴的交点为C.[来源:学科网](1)直接写出A、D、C三点的坐标;(2)在抛物线的对称轴上找一点M,使得MD+MC的值最小,并求出点M的坐标;(3)设点C关于抛物线对称的对称点为B,在抛物线上是否存在点P,使得以A、B、C、P四点为顶点的四边形为梯形?若存在,求出点P的坐标;若不存在,请说明理由.3.(珠海)(本题满分9分)如图,矩形OABC的顶点A(2,0)、C(0,23).将矩形OABC绕点O逆时针旋转30°,得矩形OEFG,线段GE、FO相交于点H,平行于y轴的直线MN分别交线段GF、GH、GO和x轴于点M、P、N、D,连结MH.(1)若抛物线2l:yaxbxc经过G、O、E三点,则它的解析式为:▲;(2)如果四边形OHMN为平行四边形,求点D的坐标;[来源:学&科&网](3)在(1)(2)的条件下,直线MN抛物线l交于点R,动点Q在抛物线l上且在R、E两点之间(不含点R、E)运动,设ΔPQH的面积为s,当33s62时,确定点Q的横坐标的取值范围.4.(玉林、防城港)(12分)给定直线l:y=kx,抛物线C:y=ax2+bx+1.(1)当b=1时,l与C相交于A,B两点,其中A为C的顶点,B与A关于原点对称,求a的值;(2)若把直线l向上平移k2+1个单位长度得到直线r,则无论非零实数k取何值,直线r与抛物线C都只有一个交点.①求此抛物线的解析式;②若P是此抛物线上任一点,过P作PQ∥y轴且与直线y=2交于Q点,O为原点.求证:OP=PQ.5.(毕节)(16分)如图,抛物线y=ax2+bx+c(a≠0)的顶点为A(﹣1,﹣1),与x轴交点M(1,0).C为x轴上一点,且∠CAO=90°,线段AC的延长线交抛物线于B点,另有点F(﹣1,0).(1)求抛物线的解析式;(2)求直线AC的解析式及B点坐标;(3)过点B做x轴的垂线,交x轴于Q点,交过点D(0,﹣2)且垂直于y轴的直线于E点,若P是△BEF的边EF上的任意一点,是否存在BP⊥EF?若存在,求P点的坐标,若不存在,请说明理由.6.(黔东南)(14分)如图,直线y=x+2与抛物线y=ax2+bx+6(a≠0)相交于A15,22和B(4,m),点P是线段AB上异于A、B的动点,过点P作PC⊥x轴于点D,交抛物线于点C.(1)求抛物线的解析式;(2)是否存在这样的P点,使线段PC的长有最大值,若存在,求出这个最大值;若不存在,请说明理由;(3)求△PAC为直角三角形时点P的坐标.7.(遵义)(14分)如图,二次函数24yxbxc3的图象与x轴交于A(3,0),B(﹣1,0),与y轴交于点C.若点P,Q同时从A点出发,都以每秒1个单位长度的速度分别沿AB,AC边运动,其中一点到达端点时,另一点也随之停止运动.(1)求该二次函数的解析式及点C的坐标;(2)当点P运动到B点时,点Q停止运动,这时,在x轴上是否存在点E,使得以A,E,Q为顶点的三角形为等腰三角形?若存在,请求出E点坐标;若不存在,请说明理由.(3)当P,Q运动到t秒时,△APQ沿PQ翻折,点A恰好落在抛物线上D点处,请判定此时四边形APDQ的形状,并求出D点坐标.[来源:Zxxk.Com]8.(河北)(本小题满分11分)如图,2×2网格(每个小正方形的边长为1)中有A,B,C,D,E,F,G,H,O九个格点,抛物线l的解析式为n2y1xbxc(n为整数).(1)n为奇数且l经过点H(0,1)和C(2,1),求b,c的值,并直接写出哪个格点是该抛物线的顶点;(2)n为偶数,且l经过点A(1,0)和B(2,0),通过计算说明点F(0,2)和H(0,1)是否在该抛物线上;(3)若l经过九个格点中的三个,直接写出所有满足这样条件的抛物线条数.9.(河南)(11分)如图,抛物线2yxbxc与x轴交于A(-1,0),B(5,0)两点,直线3yx34与y轴交于点C,,与x轴交于点D.点P是x轴上方的抛物线上一动点,过点P作PF⊥x轴于点F,交直线CD于点E.设点P的横坐标为m.(1)求抛物线的解析式;(2)若PE=5EF,求m的值;(3)若点E/是点E关于直线PC的对称点、是否存在点P,使点E/落在y轴上?若存在,请直接写出相应的点P的坐标;若不存在,请说明理由.10.(黄冈)(13分)如图,在四边形OABC中,AB∥OC,BC⊥x轴于C,A11B31,,,,动点P从O点出发,沿x轴正方向以2个单位/秒的速度运动.过P作PQ⊥OA于Q.设P点运动的时间为t秒(0t2),ΔOPQ与四边形OABC重叠的面积为S.[来源:学科网ZXXK](1)求经过O、A、B三点的抛物线的解析式并确定顶点M的坐标;(2)用含t的代数式表示P、Q两点的坐标;(3)将ΔOPQ绕P点逆时针旋转90°,是否存在t,使得ΔOPQ的顶点O或Q落在抛物线上?若存在,直接写出t的值;若不存在,请说明理由;(4)求S与t的函数解析式.11.(十堰)(12分)已知抛物线C1:2yax12的顶点为A,且经过点B(﹣2,﹣1).(1)求A点的坐标和抛物线C1的解析式;(2)如图1,将抛物线C1向下平移2个单位后得到抛物线C2,且抛物线C2与直线AB相交于C,D两点,求S△OAC:S△OAD的值;(3)如图2,若过P(﹣4,0),Q(0,2)的直线为l,点E在(2)中抛物线C2对称轴右侧部分(含顶点)运动,直线m过点C和点E.问:是否存在直线m,使直线l,m与x轴围成的三角形和直线l,m与y轴围成的三角形相似?若存在,求出直线m的解析式;若不存在,说明理由.[来源:学科网ZXXK]12.(武汉)九(1)班数学兴趣小组经过市场调查,整理出某种商品在第x(1≤x≤90)天的售价与销售量的相关信息如下表:时间x(天)1≤x<5050≤x≤90售价(元/件)x+4090每天销量(件)200-2x已知该商品的进价为每件30元,设销售该商品的每天利润为y元[(1)求出y与x的函数关系式;(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?(3)该商品在销售过程中,共有多少天每天销售利润不低于4800元?请直接写出结果.13.(武汉)如图,已知直线AB:ykx2k4与抛物线21yx2交于A、B两点,[来源:Z#xx#k.Com](1)直线AB总经过一个定点C,请直接写出点C坐标;(2)当1k2时,在直线AB下方的抛物线上求点P,使△ABP的面积等于5;(3)若在抛物线上存在定点D使∠ADB=90°,求点D到直线AB的最大距离.14.(襄阳)(12分)如图,在平面直角坐标系中,矩形OCDE的三个顶点分别是C(3,0),D(3,4),E(0,4).点A在DE上,以A为顶点的抛物线过点C,且对称轴x=1交x轴于点B.连接EC,AC.点P,Q为动点,设运动时间为t秒.(1)填空:点A坐标为▲;抛物线的解析式为▲.(2)在图1中,若点P在线段OC上从点O向点C以1个单位/秒的速度运动,同时,点Q在线段CE上从点C向点E以2个单位/秒的速度运动,当一个点到达终点时,另一个点随之停止运动.当t为何值时,△PCQ为直角三角形?(3)在图2中,若点P在对称轴上从点A开始向点B以1个单位/秒的速度运动,过点P做PF⊥AB,交AC于点F,过点F作FG⊥AD于点G,交抛物线于点Q,连接AQ,CQ.当t为何值时,△ACQ的面积最大?最大值是多少?15.(孝感)(本题满分10分)已知关于x的方程22x2k3xk10有两个不相等的实数根x1、x2.(1)求k的取值范围;(3分)(2)试说明12x0,x0;(3分)(3)若抛物线22yx2k3xk1
本文标题:专题10 二次函数的图像、性质和应用(原卷板)
链接地址:https://www.777doc.com/doc-11226706 .html