您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 专题24 轴对称变换(含折叠)问题(原卷板)
一、选择题1.(黔东南)如图,在矩形ABCD中,AB=8,BC=16,将矩形ABCD沿EF折叠,使点C与点A重合,则折痕EF的长为【】A.6B.12C.25D.452.(襄阳)如图,在矩形ABCD中,点E,F分别在边AB,BC上,且AE=13AB,将矩形沿直线EF折叠,点B恰好落在AD边上的点P处,连接BP交EF于点Q,对于下列结论:①EF=2BE;②PF=2PE;③FQ=4EQ;④△PBF是等边三角形.其中正确的是【】A.①②B.②③C.①③D.①④3.(新疆、兵团)如图,四边形ABCD中,AD∥BC,∠B=90°,E为AB上一点,分别以ED,EC为折痕将两个角(∠A,∠B)向内折起,点A,B恰好落在CD边的点F处.若AD=3,BC=5,则EF的值是【】A.15B.215C.17D.2174.(舟山)如图,在一张矩形纸片ABCD中,AD=4cm,点E,F分别是CD和AB的中点.现将这张纸片折叠,使点B落在EF上的点G处,折痕为AH.若HG的延长线恰好经过点D,则CD的长为【】[来源:学§科§网](A)2cm(B)23cm(C)4cm(D)43cm二、填空题1.(毕节)如图,在Rt△ABC中,∠ABC=90°,AB=3,AC=5,点E在BC上,将△ABC沿AE折叠,使点B落在AC边上的点B′处,则BE的长为▲.2.(黔东南)在如图所示的平面直角坐标系中,点P是直线y=x上的动点,A(1,0),B(2,0)是x轴上的两点,则PA+PB的最小值为▲.3.(河南)如图,矩形ABCD中,AD=5,AB=7.点E为DC上一个动点,把△ADE沿AE折叠,当点D的对应点D'落在∠ABC的角平分线上时,DE的长为▲.[来源:学#科#网]4.(孝感)如图,已知矩形ABCD,把矩形沿直线AC折叠,点B落在点E处,连接DE、BE,若△ABE是等边三角形,则DCEABESS=▲.[来源:学科网]5.(张家界)已知点Am2,3,B4,n5关于y轴对称,则mn=▲.6.(张家界)如图,AB、CD是⊙O两条弦,AB=8,CD=6,MN是直径,AB⊥MN于E,CD⊥MN于点F,P为EF上任意一点,,则PA+PC的最小值为▲.7.(扬州)如图,ABC的中位线DE5cm,把ABC沿DE折叠,使点A落在边BC上的点F处,若A、F两点间的距离是8cm,则ABC的面积为_______2cm.8.(赤峰)如图,E是矩形ABCD中BC边的中点,将△ABE沿AE折叠到△AEF,F在矩形ABCD内部,延长AF交DC于G点,若∠AEB=550,则∠DAF的度数为▲.9.(上海)如图,已知在矩形ABCD中,点E在边BC上,BE=2CE,将矩形沿着过点E的直线翻折后,点C、D分别落在边BC下方的点C′、D′处,且点C′、D′、B在同一条直线上,折痕与边AD交于点F,D′F与BE交于点G.设AB=t,那么△EFG的周长为______________(用含t的代数式表示).10.(成都)如图,在边长为2的菱形ABCD中,∠A=60°,M是AD边的中点,N是AB边上一动点,将△AMN沿MN所在的直线翻折得到△A′MN,连接A′C.则A′C长度的最小值是▲.11.(舟山)如图,点C在以AB为直径的半圆上,AB=8,∠CBA=30°,点D在线段AB上运动,点E与点D关于AC对称,DF⊥DE于点D,并交EC的延长线于点F.下列结论:①CE=CF;②线段EF的最小值为23;③当AD=2时,EF与半圆相切;④若点F恰好落在BC上,则AD=25;⑤当点D从点A运动到点B时,线段EF扫过的面积是163.其中正确结论的序号是▲.三、解答题1.(福州)(每小题7分,共14分)(1)如图,点E,F在BC上,BE=CF,AB=DC,∠B=∠C.求证:∠A=∠D.(2)如图,在边长为1个单位的小正方形所组成的网格中,△ABC的顶点均在网格上.①sinB的值是▲;②画出△ABC关于直线l对称的△A1B1C1(A与A1,B与B1,C与C1相对应),连接AA1,BB1,并计算梯形AA1B1B的面积.2.(梅州)(本题满分11分)如图,已知抛物线233yxx384与x轴的交点为A、D(A在D的右侧),与y轴的交点为C.(1)直接写出A、D、C三点的坐标;(2)在抛物线的对称轴上找一点M,使得MD+MC的值最小,并求出点M的坐标;(3)设点C关于抛物线对称的对称点为B,在抛物线上是否存在点P,使得以A、B、C、P四点为顶点的四边形为梯形?若存在,求出点P的坐标;若不存在,请说明理由.3.(遵义)(14分)如图,二次函数24yxbxc3的图象与x轴交于A(3,0),B(﹣1,0),与y轴交于点C.若点P,Q同时从A点出发,都以每秒1个单位长度的速度分别沿AB,AC边运动,其中一点到达端点时,另一点也随之停止运动.(1)求该二次函数的解析式及点C的坐标;(2)当点P运动到B点时,点Q停止运动,这时,在x轴上是否存在点E,使得以A,E,Q为顶点的三角形为等腰三角形?若存在,请求出E点坐标;若不存在,请说明理由.(3)当P,Q运动到t秒时,△APQ沿PQ翻折,点A恰好落在抛物线上D点处,请判定此时四边形APDQ的形状,并求出D点坐标.4.(河北)(本小题满分11分)如图,优弧AB所在⊙O的半径为2,AB=23点P为优弧AB上一点(点P不与A,B重合)将图形沿BP折叠,得到点A的对称点A'.(1)点O到弦AB的距离是▲;当BP经过点O时,∠ABA’=▲0;(2)当BA’与⊙O相切时,如图所示,求折痕BP的长;(3)若线段BA’与优弧AB只有一个公共点B,设∠ABP=α,确定α的取值范围.5.(武汉)如图,在直角坐标系中,A(0,4)、C(3,0),(1)①画出线段AC关于y轴对称线段AB;[来源:学科网]②将线段CA绕点C顺时针旋转一个角,得到对应线段CD,使得AD∥x轴,请画出线段CD;(2)若直线y=kx平分(1)中四边形ABCD的面积,请直接写出实数k的值.6.(张家界)(本小题6分)利用对称变换可设计出美丽图案,在方格纸中有一个顶点都在格点上的四边形,且每个小正方形的边长都为1,完成下列问题:[来源:学科网ZXXK](1)图案设计:先作出该四边形关于直线L成轴对称的图形,再将你所作的图形和原四边形绕O点按顺时针旋转90;(2)完成上述设计后,整个图案的面积等于▲.[来源:学_科_网]7.(扬州)(本题12分)已知矩形ABCD的一条边AD=8,将矩形ABCD折叠,使得顶点B落在CD边上的P点处.(1)如图1,已知折痕与边BC交于点O,连接AP,OP,OA.①求证:△OCP∽△PDA;②若△OCP与△PDA的面积比为1:4,求边AB的长;(2)若图1中的点P恰巧是CD边的中点,求∠OAB的度数;(3)如图2,在(1)条件下,擦去折痕AO、线段OP,连结BP.动点M在线段AP上(点M与点P、A不重合),动点N在线段AB的延长线上,且BN=PM,连结MN交PB于点F,作ME⊥BP于点E.试问当点M,N在移动过程中,线段EF的长度是否发生变化?若变化,说明理由;若不变,求线段EF的长度.8.(呼和浩特)(7分)如图,四边形ABCD是矩形,把矩形沿AC折叠,点B落在点E处,AE与DC的交点为O,连接DE.(1)求证:∆ADE≌∆CED;[来源:Zxxk.Com](2)求证:DE∥AC.[来源:学,科,网Z,X,X,K]9.(呼和浩特)(12分)如图,已知直线l的解析式为1yx12,抛物线y=ax2+bx+2经过点A(m,0),B(2,0),D51,4三点.(1)求抛物线的解析式及A点的坐标,并在图示坐标系中画出抛物线的大致图象;(2)已知点P(x,y)为抛物线在第二象限部分上的一个动点,过点P作PE垂直x轴于点E,延长PE与直线l交于点F,请你将四边形PAFB的面积S表示为点P的横坐标x的函数,并求出S的最大值及S最大时点P的坐标;(3)将(2)中S最大时的点P与点B相连,求证:直线l上的任意一点关于x轴的对称点一定在PB所在直线上.10.(宁夏)(6分)在平面直角坐标系中,△ABC的三个顶点坐标分别为A2,1,B4,5,C5,2.(1)画出△ABC关于y轴对称的△A1B1C1;(2)画出△ABC关于原点O成中心对称的△A2B2C2.[来源:学科网]11.(宁夏)(6分)在平行四边形ABCD中,将△ABC沿AC对折,使点B落在B'处,AB'‘和CD相交于点O.求证:OA=OC.12.(潍坊)(本小题满分12分)如图1,在正方形ABCD中,E、F分别为BC、CD的中点,连接AE、BF,交点为G.(1)求证:AE⊥BF;(2)将△BCF沿BF对折,得到△BPF(如图2),延长FP交BA的延长线于点Q,求sin∠BQP的值;(3)将△ABE绕点A逆时针方向旋转,使边AB正好落在AE上,得到△AHM(如图3),若AM和BF相交于点N,当正方形ABCD的面积为4时,求四边形GHMN的面积.13.(天津)(本小题10分)在平面直角坐标系中,O为原点,直线l:x=1,点A(2,0),点E、点F、点M都在直线l上,且点E和点F关于点M对称,直线EA与直线OF交于点P.(1)若点M的坐标为(1,-1),①当点F的坐标为(1,1)时,如图,求点P的坐标;②当点F为直线l上的动点时,记点P(x,y),求y关于x的函数解析式.(2)若点M(1,m),点F(1,t),其中t≠0,过点P作PQ⊥l于点Q,当OQ=PQ时,试用含t的式子表示m.14.(金华)(本题6分)在棋盘中建立如图所示的直角坐标系,三颗棋子A,O,B的位置如图,它们的坐标分别是1,1,(0,0),(1,0).(1)如图2,添加棋C子,使四颗棋子A,O,B,C成为一个轴对称图形,请在图中画出该图形的对称轴;(2)在其他格点位置添加一颗棋子P,使四颗棋子A,O,B,P成为轴对称图形,请直接写出棋子P的位置的坐标.(写出2个即可)15.(舟山)如图,在平面直角坐标系中,A是抛物线21yx2上的一个动点,且点A在第一象限内.AE⊥y轴于点E,点B坐标为(O,2),直线AB交x轴于点C,点D与点C关于y轴对称,直线DE与AB相交于点F,连结BD.设线段AE的长为m,△BED的面积为S.(1)当m2时,求S的值.(2)求S关于mm2的函数解析式.(3)①若S=3时,求AFBF的值;②当m>2时,设AFkBF,猜想k与m的数量关系并证明.[来源:学科网ZXXK]16.(重庆A)已知:如图①,在矩形ABCD中,AB=5,AD=320,AE⊥BD,垂足是E.点F是点E关于AB的对称点,连接AF、BF.(1)求AE和BE的长;(2)若将△ABF沿着射线BD方向平移,设平移的距离为m(平移距离指点B沿BD方向所经过的线段长度).当点F分别平移到线段AB、AD上时,直接写出相应的m的值.(3)如图②,将△ABF绕点B顺时针旋转一个角(0°<<180°),记旋转中的△ABF为△A′BF′,在旋转过程中,设A′F′所在的直线与直线AD交于点P.与直线BD交于点Q.是否存在这样的P、Q两点,使△DPQ为等腰三角形?若存在,求出此时DQ的长;若不存在,请说明理由.
本文标题:专题24 轴对称变换(含折叠)问题(原卷板)
链接地址:https://www.777doc.com/doc-11231486 .html