您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 数学高中教学设计【精选4篇】
1、参考资料,少熬夜!数学高中教学设计【精选4篇】【导读指引】三一刀客最漂亮的网友为您整理分享的“数学高中教学设计【精选4篇】”文档资料,供您学习参考,希望此文档对您有所帮助,喜欢就分享给朋友们吧!高中数学单元教学设计【第一篇】教学目标(1)理解四种命题的概念;(2)理解四种命题之间的相互关系,能由原命题写出其他三种形式;(3)理解一个命题的真假与其他三个命题真假间的关系;(4)初步掌握反证法的概念及反证法证题的基本步骤;(5)通过对四种命题之间关系的学习,培养学生逻辑推理能力;(6)通过对四种命题的存在性和相对性的认识,进行辩证唯物主义观点教育;(7)培养学生用反证法简单推理的技能,从而发展学生的思维能力。教学重点和难点重点:四种命题之间的关系;难点:反证法的运用。教学过程设计第一课时:四种命题一、导入新课练习1.把下列命题改写成“若p则q”的形式:(l)同位角相等,两直线平行;(2)正方形的四条边相等。2.什么叫互逆命题?上述命题的三一刀客…逆命题是什么?将命题写成“若p则q”的形式,关键是找到命题的条件p与q结论。如果第一个命题的条件是第二个命题的结论,且第一个命题的结论是第二个命。
2、题的条件,那么这两个命题叫做互道命题。上述命题的道命题是“若一个四边形的四条边相等,则它是正方形”和“若两条直线平行,则同位角相等”。值得指出的是原命题和逆命题是相对的。我们也可以把逆命题当成原命题,去求它的逆命题。3.原命题真,逆命题一定真吗?“同位角相等,两直线平行”这个原命题真,逆命题也真。但“正方形的四条边相等”的原命题真,逆命题就不真,所以原命题真,逆命题不一定真。学生活动:口答:(1)若同位角相等,则两直线平行;参考资料,少熬夜!(2)若一个四边形是正方形,则它的四条边相等。设计意图:通过复习旧知识,打下学习否命题、逆否命题的基础。二、新课设问命题“同位角相等,两条直线平行”除了能构成它的逆命题外,是否还可以构成其它形式的命题?讲述可以将原命题的条件和结论分别否定,构成“同位角不相等,则两直线不平行”,这个命题叫原命题的否命题。提问你能由原命题“正方形的四条边相等”构成它的否命题吗?学生活动:口答:若一个四边形不是正方形,则它的四条边不相等。教师活动:讲述一个命题的条件和结论分别是另一个命题的条件的否定和结论的否定,这样的两个命题叫做互否命题。把其中一个命题叫做原命题,另一。
3、个命题叫做原命题的否命题。若用p和q分别表示原命题的条件和结论,用┐p和┐q分别表示p和q的否定。板书原命题:若p则q;否命题:若┐p则q┐。提问原命题真,否命题一定真吗?举例说明?学生活动:讲论后回答:原命题“同位角相等,两直线平行”真,它的否命题“同位角不相等,两直线不平行”不真。原命题“正方形的四条边相等”真,它的否命题“若一个四边形不是正方形,则它的四条边不相等”不真。由此可以得原命题真,它的否命题不一定真。设计意图:通过设问和讨论,让学生在自己举例中研究如何由原命题构成否命题及判断它们的真假,调动学生学习的积极性。教师活动:提问命题“同位角相等,两条直线平行”除了能构成它的逆命题和否命题外,还可以不可以构成别的命题?学生活动:讨论后回答总结可以将这个命题的条件和结论互换后再分别将新的条件和结论分别否定构成命题“两条直线不平行,则同位角不相等”,这个命题叫原命题的逆否命题。教师活动:提问原命题“正方形的四条边相等”的逆否命题是什么?学生活动:口答:若一个四边形的四条边不相等,则不是正方形。教师活动:讲述一个命题的条件和结论分别是另一个命题的结论的参考资料,少熬夜!否定和条件的否。
4、定,这样的两个命题叫做互为逆否命题。把其中一个命题叫做原命题,另一个命题就叫做原命题的逆否命题。原命题是“若p则q”,则逆否命题为“若┐q则┐p。提问“两条直线不平行,则同位角不相等”是否真?“若一个四边形的四条边不相等,则不是正方形”是否真?若原命题真,逆否命题是否也真?学生活动:讨论后回答这两个逆否命题都真。原命题真,逆否命题也真。教师活动:提问原命题的真假与其他三种命题的真假有什么关系?举例加以说明?总结1.原命题为真,它的逆命题不一定为真。2.原命题为真,它的否命题不一定为真。3.原命题为真,它的逆否命题一定为真。设计意图:通过设问和讨论,让学生在自己举例中研究如何由原命题构成逆否命题及判断它们的真假,调动学生学的积极性。教师活动:三、课堂练习1.若原命题是“若p则q”,其它三种命题的形式怎样表示?请写在方框内?学生活动:笔答教师活动:2.根据上图所给出的箭头,写出箭头两头命题之间的关系?举例加以说明?学生活动:讨论后回答设计意图:通过学生自己填图,使学生掌握四种命题的形式和它们之间的关系。教师活动:高中数学教学设计【第二篇】一。教材分析。(1)教材的地位与作用:《等比数列的前。
5、n项和》选自《普通高中课程标准数学教科书·数学(5),是数列这一章中的一个重要内容,它不仅在现实生活中有着广泛的实际应用,如储蓄、分期付款的有关计算等等,而且公式推导过程中所渗透的类比、化归、分类讨论、整体变换和方程等思想方法,都是学生今后学习和工作中必备的数学素养。(2)从知识的体系来看:“等比数列的前n项和”是“等差数列及其前n项和”与“等比数列”内容的延续、不仅加深参考资料,少熬夜!对函数思想的理解,也为以后学数列的求和,数学归纳法等做好铺垫二。学情分析。(1)学生的已有的知识结构:掌握了等差数列的概念,等差数列的通项公式和求和公式与方法,等比数列的概念与通项公式。(2)教学对象:高二理科班的学生,学习兴趣比较浓,表现欲较强,逻辑思维能力也初步形成,具有一定的分析问题和解决问题的能力,但由于年龄的原因,思维尽管活跃、敏捷,却缺乏冷静、深刻,因而片面、不够严谨。(3)从学生的认知角度来看:学生很容易把本节内容与等差数列前n项和从公式的形成、特点等方面进行类比,这是积极因素,应因势利导。不利因素是:本节公式的推导与等差数列前n项和公式的推导有着本质的不同,这对学生的思维是一个突破,另。
6、外,对于q=1这一特殊情况,学生往往容易忽视,尤其是在后面使用的过程中容易出错。三。教学目标。根据教学大纲的要求、本节教材的特点和本班学生的认知规律,本节课的教学目标确定为:(1)知识技能目标————理解并掌握等比数列前n项和公式的推导过程、公式的特点,在此基础上,并能初步应用公式解决与之有关的问题。(2)过程与方法目标————通过对公式推导方法的探索与发现,向学生渗透特殊到一般、类比与转化、分类讨论等数学思想,培养学生观察、比较、抽象、概括等逻辑思维能力和逆向思维的能力。(3)情感,态度与价值观————培养学生勇于探索、敢于创新的精神,从探索中获得成功的体验,感受数学的奇异美、结构的对称美、形式的简洁美。四。重点,难点分析。教学重点:公式的推导、公式的特点和公式的运用。教学难点:公式的推导方法及公式应用中q与1的关系。五。教法与学法分析。培养学生学会学习、学会探究是全面发展学生能力的重要前提,是高中新课程改革的主要任务。如何培养学生学会学习、学会探究呢?建构主义认为:“知识不是被动吸收的,而是由认知主体主动建构的。”这个观点从教学的角度来理解就是:知识不是通过教师传授得到的,而是学生。
7、在一定的。情境中,运用已有的学习经验,并通过与他人(在教师指导和学习伙伴的帮助下)协作,主动建构而获得的,建构主义教学模式强调以学生为中心,视学生为认知的主体,教师只对学生的意义建构起帮助和促进作用。因此,本节课采用了启发式和探究式相结合的教学方法,让老师的主导性和学生的主体性有机结合,使学生能够愉快地自觉学习,通过学生自己观察、分析、探索等步骤,自己发现解决问题的方法,比较论证后得到一般性结论,形成完整的数学模型,参考资料,少熬夜!再运用所得理论和方法去解决问题。一句话:还课堂以生命力,还学生以活力。六。课堂设计(一)创设情境,提出问题。(时间设定:3分钟)[利用投影展示]在古印度,有个名叫西萨的人,发明了国际象棋,当时的印度国王大为赞赏,对他说:我可以满足你的任何要求。西萨说:请给我棋盘的64个方格上,第一格放1粒小麦,第二格放2粒,第三格放4粒,往后每一格都是前一格的两倍,直至第64格。国王令宫廷数学家计算,结果出来后,国王大吃一惊。为什么呢?[设计这个情境目的是在引入课题的同时激发学生的兴趣,调动学习的积极性。故事内容紧扣本节课的主题与重点]提出问题1:同学们,你们知道西萨要的。
8、是多少粒小麦吗?高中数学教学设计题模板【第三篇】教材分析圆是学生在初中已初步了解了圆的知识及前面学习了直线方程的基础上来进一步学习《圆的标准方程》,它既是前面圆的知识的复习延伸,又是后继学习圆与直线的位置关系奠定了基础。因此,本节课在本章中起着承上启下的重要作用。教学目标1、知识与技能:探索并掌握圆的标准方程,能根据方程写出圆的坐标和圆的半径。2、过程与方法:通过圆的标准方程的学习,掌握求曲线方程的方法,领会数形结合的思想。3、情感态度与价值观:激发学生学习数学的兴趣,感受学习成功的喜悦。教学重点难点以及措施教学重点:圆的标准方程理解及运用教学难点:根据不同条件,利用待定系数求圆的标准方程。根据教学内容的特点及高一年级学生的年龄、认知特征,紧紧抓住课堂知识的结构关系,遵循“直观认知――操作体会――感悟知识特征――应用知识”的认知过程,设计出包括:观察、操作、思考、交流等内容的教学流程。并且充分利用现代化信息技术的教学手段提高教学效率。以此使学生获取知识,给学生独立操作、合作交流的机会。学法上注重让学生参与方程的推导过程,努力拓展学生思维的空间,促其在尝试中发现,讨论中明理,合作中成功,。
9、让学生真正体验知识的形成过程。学习者分析高一年级的学生从知识层面上已经掌握了圆的相关性质;从能力层面具备了一定的观察、分析和数据处理能力,对数学问题有自己个人的看法;从情感层面上学生思维活跃积极性高,但他们数学应用意识和语言表达的能力还有待加强。教法设计参考资料,少熬夜!问题情境引入法启发式教学法讲授法学法指导自主学习法讨论交流法练习巩固法教学准备ppt课件导学案教学环节教学内容教师活动学生活动设计意图情景引入回顾复习(2分钟)1、观赏生活中有关圆的图片2、回顾复习圆的定义,并观看圆的生成flas_。提问:直线可以用一个方程表示,那么圆可以用一个方程表示吗?教师创设情景,引领学生感受圆。教师提出问题。引导学生思考,引出本节主旨。学生观赏圆的图片和动画,思考如何表示圆的方程。生活中的图片展示,调动学生学习的积极性,让学生体会到园在日常生活中的广泛应用自主学习(5分钟)1、介绍动点轨迹方程的求解步骤:(1)建系:在图形中建立适当的坐标系;(2)设点:用有序实数对(x,y)表示曲线上任意一点M的坐标;(3)列式:用坐标表示条件P(M)的方程;(4)化简:对P(M)方程化简到最简形式;2、学生。
10、自主学习圆的方程推导,并完成相应学案内容,教师介绍求轨迹方程的步骤后,引导学生自学圆的标准方程自主学习课本中圆的标准方程的推导过程,并完成导学案的内容,并当堂展示。培养学生自主学习,获取知识的能力合作探究(10分钟)1、根据圆的标准方程说明确定圆的方程的条件有哪些?2、点M(x0,y0)与圆(x-a)2+(y-b)2=r2的关系的判断方法:(1)点在圆上(2)点在圆外(3)点在圆内教师引导学生分组探讨,从旁巡视指导学生在自学和探讨中遇到的问题,并鼓励学生以小组为单位展示探究成果。参考资料,少熬夜!学生展开合作性的探讨,并陈述自己的研究成果。通过合作探究和自我的展示,鼓励学生合作学习的品质当堂训练(18分钟)1、求下列圆的圆心坐标和半径C1:x2+y2=5C2:(x-3)2+y2=4C3:x2+(y+1)2=a2(a≠0)2、以C(4,-6)为圆心,半径等于3的圆的标准方程3、设圆(x-a)2+(y-b)2=r2则坐标原点的位置是()A.在圆外B.在圆上C.在圆内D.与a的取值有关4、写出下列各圆的标准方程(1)圆心在原点,半径等于5(2)经过点P(5,1),圆心在点C(6,-2);(3)。
本文标题:数学高中教学设计【精选4篇】
链接地址:https://www.777doc.com/doc-11255851 .html