您好,欢迎访问三七文档
当前位置:首页 > 幼儿/小学教育 > 幼儿教育 > 初二数学教案(4篇)
初二数学教案(4篇)老师的工作中少不了写教案课件,因为这是上课的必备工具。为了保证教学质量,老师需要按照教案课件来进行教学。我们为大家准备了关于“初二数学教案(4篇)”的相关资讯,接下来我们还会不断发布相关内容,敬请期待!初二数学教案篇【第一篇】教学目标1、初步掌握频率分布直方图的概念,能绘制有关连续型统计量的直方图;2、让学生进一步经历数据的整理和表示的过程,掌握绘制频率分布直方图的方法;教学重点掌握频率分布直方图概念及其应用;教学难点绘制连续统计量的直方图教学过程Ⅰ.提出问题,创设情境,引入新课:问题:我们班准备从63名同学中挑选出身高相差不多的40名同学参加比赛,那么这个想法可以实现吗?应该选择身高在哪个范围的学生参加?63名学生的身高数据如下:158158160168159159151158159168158154158154169158158158159167170153160160159159160149163163162172161153156162162163157162162161157157164155156165166156154166164165156157153165159157155164156解:(确定组距)最大值为172,最小值为149,他们的差为23(身高x的变化范围在23厘米,)(分组划记)频数分布表:身高(x)划记频数(学生人数)149≤x152≤x155≤x158≤x161≤164≤x167≤x170≤x从表中看,身高在155≤x(绘制频数分布直方图如课本P72图)探究:上面对数据分组时,组距取3,把数据分成8个组,如果组距取2或4,那么数据应分成几个组,这样做能否选出身高比较整齐的队员?分析:如果组距取2,那么分成12组;如果组距取4,那么分成6组。都可以选出身高比较整齐的队员。归纳:组距和组数的确定没有固定的标准,要凭借经验和研究的具体问题来决定,通常数据越多,分成的组数也越多,当数据在100个以内时,根据数据的多少通常分为5~12个组。我们还可以用频数折线图来描述频数分布的情况。频数折线图可以在频数分布直方图的基础上画出来。首先取直方图中每一个长方形上边的中草药点,然后在横轴上取两个频数为0的点,在上方图的左边取(147、5,0),在直方图的右边取点(174、5,0),将这些点用线段依次连接起来,就得到频数折线图。频数折线图也可以不通过直方图直接画出。根据表,求了各个小组两个端点的平均数,而这些平均数称为组中值,用横轴表示身高(组中值),用纵轴表示频数,以各小组的组中值为横坐标,各小组对应的'频数为纵坐标描点,另外再在横轴上取两个点,依次连接这些点,就得到频数分布折线图如课本P73图。II课堂小结:1怎样制作频数分布直方图和频数分布折线图2组距和组数没有确定标准,当数据在1000个以内时,通常分成5~12组3如果取个长方形上边的中点,可以得到频数折线图4求各小组两个断点的平均数,这些平均数叫组中值。初二数学教案篇【第二篇】通过学生的讨论,使学生更清楚以下事实:(1)分解因式与整式的乘法是一种互逆关系;(2)分解因式的结果要以积的形式表示;(3)每个因式必须是整式,且每个因式的次数都必须低于原来的多项式的次数;(4)必须分解到每个多项式不能再分解为止。活动5:应用新知例题学习:P166例1、例2(略)在教师的引导下,学生应用提公因式法共同完成例题。让学生进一步理解提公因式法进行因式分解。活动6:课堂练习练习;2.看谁连得准x2-y2(x+1)29-25x2y(x-y)x2+2x+1(3-5x)(3+5x)xy-y2(x+y)(x-y)3.下列哪些变形是因式分解,为什么?(1)(a+3)(a-3)=a2-9(2)a2-4=(a+2)(a-2)(3)a2-b2+1=(a+b)(a-b)+1(4)2πR+2πr=2π(R+r)学生自主完成练习。通过学生的反馈练习,使教师能全面了解学生对因式分解意义的理解是否到位,以便教师能及时地进行查缺补漏。活动7:课堂小结从今天的课程中,你学到了哪些知识?掌握了哪些方法?明白了哪些道理?学生发言。通过学生的回顾与反思,强化学生对因式分解意义的理解,进一步清楚地了解分解因式与整式的乘法的互逆关系,加深对类比的数学思想的理解。活动8:课后作业课本P170习题的第1、4大题。学生自主完成通过作业的巩固对因式分解,特别是提公因式法理解并学会应用。板书设计(需要一直留在黑板上主板书)提公因式法例题1.因式分解的定义2.提公因式法初二数学教案篇【第三篇】教学目标知识与技能目标1.经历平行四边形判别条件的探索过程,发现平行四边形的常用判别条件。2.掌握平行四边形的判别条件;对角线互相平分的四边形是平行四边形;一组对边平行且相等的四边形是平行四边形;两组对边分别相等的四边形是平行四边形。3.逐步掌握说理的基本方法。过程与方法目标1.在探索平行四边形的判别条件的过程中,发展学生的合情推理意识,主动探索的习惯。2.鼓励学生用多种方法进行说理。情感与态度目标1.培养学生探索创新的能力,开拓学生思路,发展学生的思维能力。2.培养学生合作学习,增强学生的自我评价意识。教材分析教材通过创设“钉制平行四边形框架”这一情境,便于学生发现和探索平行四边形的常用判别方法。如有条件可要求学生自己准备,由学生自我操作。也可由教师演示。教学重点:平行四边形的判别方法。教学难点:利用平行四边形的判别方法进行正确的说理。学情分析初二学生对平面图形的认识能力正在形成,抽象思维还不够,学习几何知识处于现象描述和说理的过渡时期。因此,对这部分内容的学习,要引导学生学会正确的说理,理清楚四边形在什么条件下用判定定理,在什么条件下用性质定理。教学流程一、创设情境,引入新课师:请同学们拿出课前准备的小木条,帮助小明的爸爸钉制平行四边形的框架。学生活动:学生按小组进行探索。初二数学教案篇【第四篇】一、学习目标1.多项式除以单项式的运算法则及其应用。2.多项式除以单项式的运算算理。二、重点难点重点:多项式除以单项式的运算法则及其应用。难点:探索多项式与单项式相除的运算法则的过程。三、合作学习(一)回顾单项式除以单项式法则(二)学生动手,探究新课1.计算下列各式:1(am+bm)÷m;2(a2+ab)÷a;3(4x2y+2xy2)÷2xy。2.提问:①说说你是怎样计算的;②还有什么发现吗?四、精讲精练例:1(12a3—6a2+3a)÷3a;2(21x4y3—35x3y2+7x2y2)÷(—7x2y);3[(x+y)2—y(2x+y)—8x]÷2x;4(—6a3b3+8a2b4+10a2b3+2ab2)÷(—2ab2)。随堂练习:教科书练习。五、小结1、单项式的除法法则2、应用单项式除法法则应注意:A、系数先相除,把所得的结果作为商的系数,运算过程中注意单项式的系数饱含它前面的符号;B、把同底数幂相除,所得结果作为商的因式,由于目前只研究整除的情况,所以被除式中某一字母的指数不小于除式中同一字母的指数;C、被除式单独有的字母及其指数,作为商的一个因式,不要遗漏;D、要注意运算顺序,有乘方要先做乘方,有括号先算括号里的,同级运算从左到右的顺序进行;E、多项式除以单项式法则。
本文标题:初二数学教案(4篇)
链接地址:https://www.777doc.com/doc-11413804 .html