您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 高中数学说课稿(精编3篇)
参考资料,少熬夜!高中数学说课稿(精编3篇)【导读指引】三一刀客最漂亮的网友为您整理分享的“高中数学说课稿(精编3篇)”文档资料,供您学习参考,希望此文档对您有所帮助,喜欢就分享给朋友们吧!高中数学说课稿1一、说教材:1.地位及作用:“椭圆及其标准方程”是高中《解析几何》第二章第七节内容,是本书的重点内容之一,也是历年高考、会考的必考内容,是在学完求曲线方程的基础上,进一步研究椭圆的特性,以完成对圆锥曲线的全面研究,为今后的学习打好基础,因此本节内容具有承前启后的作用。2.教学目标:根据《教学大纲》,《考试说明》的要求,并根据教材的具体内容和学生的实际情况,确定本节课的教学目标:(1)知识目标:掌握椭圆的定义和标准方程,以及它们的应用。(2)能力目标:(a)培养学生灵活应用知识的能力。(b)培养学生全面分析问题和解决问题的能力。(c)培养学生快速准确的运算能力。(3)德育目标:培养学生数形结合思想,类比、分类讨论的思想以及确立从感性到理性认识的辩证唯物主义观点。3.重点、难点和关键点:因为椭圆的定义和标准方程是解决与椭圆有关问题的重要依据,也是研究双曲线和抛物线的基础,因此,它是本节教材的重点;由于学生推理归纳能力较低,在推导椭圆的标准方程时涉及到根式的两次平方,并且运算也较繁,因此它是本节课的难点;坐标系建立的好坏直接影响标准方程的推导和化简,因此建立一个适当的直角坐标系是本节的关键。二、说教材处理为了完成本节课的教学目标,突出重点、分散难点、根据教材的内容和学生的实际情况,对教材做以下的处理:1.学生状况分析及对策:2.教材内容的组织和安排:本节教材的处理上按照人们认识事物的规律,遵循由浅入深,循序渐进,层层深入的原则组织和安排如下:(1)复√三一刀客★√习提问(2)引入新课(3)新课讲解(4)反馈练习(5)归纳总结(6)布置作业三、说教法和学法1.为了充分调动学生学习的积极性,是学生变被动学习为主动而愉快的学习,引导学生自己动手,让学生的思维活动在教师的引导下层层展开。请学生参与课堂。加强方程推导的参考资料,少熬夜!指导,是传授知识与培养能力有机的溶为一体,为此,本节课采用“引导教学法”。2.利用电脑所画图形的动态演示总结规律。同时利用电脑的动态演示激发学生的学习兴趣。四、教学过程教学环节3.设a(-2,0),b(2,0),三角形abp周长为10,动点p轨迹方程。例1属基础,主要反馈学生掌握基本知识的程度。例2可强化基本技能训练和基本知识的灵活运用。小结为使学生对本节内容有一个完整深刻的认识,教师引导学生从以下几个方面进行小结。1.椭圆的定义和标准方程及其应用。2.椭圆标准方程中a,b,c诸关系。3.求椭圆方程常用方法和基本思路。通过小结形成知识体系,加深对本节知识的理解培养学生的归纳总结能力,增强学生学好圆锥曲线的信心。布置作业(1)77页——78页1,2,3,79页11(2)预习下节内容巩固本节所学概念,强化基本技能训练,培养学生良好的学习习惯和品质,发现和弥补教学中的遗漏和不足。高中数学说课稿2函数的单调性今天我说课的题目是《函数的单调性》,下面我将围绕本节课“教什么?”、“怎样教?”以及“为什么这样教?”三个问题,从教材分析、教学目标分析、教学重难点分析、教法与学法、教学过程五方面逐一加以分析和说明。一、说教材1、教材的地位和作用本节内容选自北师大版高中数学必修1,第二章第3节。函数是高中数学的课程,它是描述事物运动变化的模型,而函数的单调性是函数的一大特征,它为我们之后的学习奠定重要基础。2、学情分析本节课的学生是高一学生,他们在初中阶段,通过一次函数、二次函数、反比例函数的学习已经对函数的增减性有了初步的感性认识。在高中阶段,用符号语言刻画图形语言,用定量分析解释定性结果,有利于培养学生的理性思维,为后续函数的学习作准备,也为利用倒数研究单调性的相关知识奠定了基础。教学目标分析基于以上对教材和学情的分析以及新课标教学理念,我将参考资料,少熬夜!教学目标分为以下三个部分:1、知识与技能(1)理解函数的单调性和单调函数的意义;(2)会判断和证明简单函数的单调性。2、过程与方法(1)培养从概念出发,进一步研究性质的意识及能力;(2)体会数形结合、分类讨论的数学思想。3、情感态度与价值观由合适的例子引发学生探求数学知识的欲望,突出学生的主观能动性,激发学生学习数学的兴趣。三、教学重难点分析通过以上对教材和学生的分析以及教学目标,我将本节课的重难点重点:函数单调性的概念,判断和证明简单函数的单调性。难点:1、函数单调性概念的认知(1)自然语言到符号语言的转化;(2)常量到变量的转化。2、应用定义证明单调性的代数推理论证。四、教法与学法分析1、教法分析基于以上对教材、学情的分析以及新课标的教学理念,本节课我采用启发式教学、多媒体辅助教学和讨论法。学生可以在多媒体中感受到数学在生活中的应用,启发式教学和讨论法发散学生思维,培养学生善于思考的能力。2、学法分析新课改理念告诉我们,学生不仅要学知识,更重要的是要学会怎样学习,为终生学习奠定扎实的基础。所以本节课我将引导学生通过合作交流、自主探索的方法理解函数的单调性及特征。五、教学过程为了更好的实现本课的三维目标,并突破重难点,我设计以下五个环节来进行我的教学。(一)知识导入温故而知新,我将先从之前学习的知识引入,给出一些函数,比如y=x、y=-x、y=|x|,让学生作出这些函数的图像,然后让学生讨论这些函数图像是上升的还是下降的,由此引入到我的新课。在这个过程中不仅可以检查学生掌握基本初等函数图像的情况,而且符合学生的认知结构,通过学生自主探究,从知识产生、发展的过程中构建新概念,有利于激发学生的思维和学习的积极主动性。(二)讲授新课1.问题:分别做出函数y=x2,y=x+2的图像,指出上面的函数图象在哪个区间是上升的,在哪个区间是下降的?通过学生熟悉的图像,及时引导学生观察,函数图像上A参考资料,少熬夜!点的运动情况,引导学生能用自然语言描述出,随着x增大时图像变化规律。让学生大胆的去说,老师逐步修正、完善学生的说法,最后给出正确答案。2、观察函数y=x2随自变量x变化的情况,设置启发式问题:(1)在y轴的右侧部分图象具有什么特点?(2)如果在y轴右侧部分取两个点(x1,y1),(x2,y2),当x1(3)如何用数学符号语言来描述这个规律?教师补充:这时我们就说函数y=x2在(0,+∞)上是增函数。(4)反过来,如果y=f(x)在(0,+∞)上是增函数,我们能不能得到自变量与函数值的变化规律呢?类似地分析图象在y轴的左侧部分。通过对以上问题的分析,从正、反两方面领会函数单调性。师生共同总结出单调增函数的定义,并解读定义中的关键词,如:区间内,任意,当x1仿照单调增函数定义,由学生说出单调减函数的定义。教师总结归纳单调性和单调区间的定义。注意强调:函数的单调性是函数在定义域某个区间上的局部性质,也就是说,一个函数在不同的区间上可以有不同的单调性。(我将给出函数y=x2,并画出这个函数的图像,让学生观察函数图像的特点,让他们描述函数图像的增减性,慢慢得到函数单调性的概念。在这个过程中,学生把对图像的感性认识转化为了数学关系,这种从特殊到一般的学习过程有利于学生对概念的理解)(三)巩固练习1练习1:说出函数f(x)=的单调区间,并指明在该区间上的单调性。x练习2:练习2:判断下列说法是否正确①定义在R上的函数f(x)满足f(2)f(1),则函数是R上的增函数。②定义在R上的函数f(x)满足f(2)f(1),则函数是R上不是减函数。1③已知函数y=,因为f(-1)1我将给出一些具体的函数,如y=,f(x)=3x+2让学生说出函数的单调区间,并指明在该区间x上的单调性。通过这种练习的方式,帮助学生巩固对知识的掌握。(四)归纳总结我先让学生进行小结,函数单调性定义,判断函数单调性的方法(图像、定义),然后教师进行补充,在这样一个过程中既有利于学生巩固知识,也有利于教师对学生的学习情况有一定的了解,为下一节课的教学过程做好准备。(五)布置作业必做题:习题2-3A组第2,4,5题。参考资料,少熬夜!选做题:习题2-3B组第2题。新课程理念告诉我们,不同的人在数学上可以获得不同的发展,因此要设计不同程度要求的习题。高中数学说课稿3一、教材分析(一)教材的地位和作用“一元二次不等式解法”既是初中一元一次不等式解法在知识上的延伸和发展,又是本章集合知识的运用与巩固,也为下一章函数的定义域和值域教学作铺垫,起着链条的作用。同时,这部分内容较好地反映了方程、不等式、函数知识的内在联系和相互转化,蕴含着归纳、转化、数形结合等丰富的数学思想方法,能较好地培养学生的观察能力、概括能力、探究能力及创新意识。(二)教学内容本节内容分2课时学习。本课时通过二次函数的图象探索一元二次不等式的解集。通过复习“三个一次”的关系,即一次函数与一元一次方程、一元一次不等式的关系;以旧带新寻找“三个二次”的关系,即二次函数与一元二次方程、一元二次不等式的关系;采用“画、看、说、用”的思维模式,得出一元二次不等式的解集,品味数学中的和谐美,体验成功的乐趣。二、教学目标分析根据教学大纲的要求、本节教材的特点和高一学生的认知规律,本节课的教学目标确定为:知识目标——理解“三个二次”的关系;掌握看图象找解集的方法,熟悉一元二次不等式的解法。能力目标——通过看图象找解集,培养学生“从形到数”的转化能力,“从具体到抽象”、“从特殊到一般”的归纳概括能力。情感目标——创设问题情景,激发学生观察、分析、探求的学习激情、强化学生参与意识及主体作用。三、重难点分析一元二次不等式是高中数学中最基本的不等式之一,是解决许多数学问题的重要工具。本节课的重点确定为:一元二次不等式的解法。要把握这个重点。关键在于理解并掌握利用二次函数的图象确定一元二次不等式解集的方法——图象法,其本质就是要能利用数形结合的思想方法认识方程的解,不等式的解集与函数图象上对应点的横坐标的内在联系。由于初中没有专门研究过这类问题,高一学生比较陌生,要真正掌握有一定的难度。因此,本节课的难点确定为:“三个二次”的关系。要突破这个难点,让学生归纳“三个一次”的关系作铺垫。四、教法与学法分析(一)学法指导参考资料,少熬夜!教学矛盾的主要方面是学生的学。学是中心,会学是目的。因此在教学中要不断指导学生学会学习。本节课主要是教给学生“动手画、动眼看、动脑想、动口说、善提炼、勤钻研”的研讨式学习方法,这样做增加了学生自主参与,合作交流的机会,教给了学生获取知识的途径、思考问题的方法,使学生真正成了教学的主体;只有这样做,才能使学生“学”有新“思”,“思”有新“得”,“练”有新“获”,学生也才会逐步感受到数学的美,会产生一种成功感,从而提高学生学习数学的兴趣;也只有这样做,课堂教学才富有时代特色,才能适应素质教育下培养“创新型”人才的需要。(二)教法分析本节课设计的指导思想是:现代认知心理学——建构主义学习理论。建构主义学习理论认为:应把学习看成是学生主动的建构活动,学生应与一定的知识背景即情景相联系,在实际情景下进行学习,可以使学生利用已有知识与经验同化和索引出当前要学习的新知识,这样获取的知识,不但便于保持,而且易于迁移到陌生的问题情景中。本节课采用“诱思引探教学法”。把问题作为出发点,指导学生“画、看、说、用”。较好地探求一元二次不等式的解法。五、课堂设计本节课的教学设计充分体现以学生发展为本,培养学生的观察、概括和探究能力,遵循学生的认知规律,体现理论联系实际、循序渐进和因材施教的教学原则,通过问题情境的创设,激发兴趣,使学生在问题解决的探索过程中,由学会走向会学,由被动答题走向主动探究。(一)创设情景,引出“三个一次”的关系本节课开始,先让学生解一元二次方程x2-x-6=0,如果我把“=”改成“”则变成一元二次不等式x2-x-60让学生解,学生肯定感到很突然。但是“思维往往是从惊奇和疑问开始”,这样直奔主题,目的在于构造悬念,激活学生的思维兴趣。为此,
本文标题:高中数学说课稿(精编3篇)
链接地址:https://www.777doc.com/doc-11476484 .html