您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 八年级数学上册学习步骤与教案全集(最新4篇)
参考资料,少熬夜!八年级数学上册学习步骤与教案全集(最新4篇)【导读指引】三一刀客最漂亮的网友为您整理分享的“八年级数学上册学习步骤与教案全集(最新4篇)”文档资料,供您学习参考,希望此文档对您有所帮助,喜欢就分享给朋友们吧!初二数学上册教案【第一篇】一、学生起点分析《平面直角坐标系》是八年级上册第五章《位置与坐标》第二节内容。本章是“图形与坐标”的主体内容,不仅呈现了“确定位置的多种方法、平面直角坐标系”等内容,而且也从坐标的角度使学生进一步体会图形平移、轴对称的数学内涵,同时又是一次函数的重要基础。《平面直角坐标系》反映平面直角坐标系与现实世界的密切联系,让学生认识数学与人类生活的密切联系和对人类历史发展的作用,提高学生参加数学学习活动的积极性和好奇心。因此,教学过程中创设生动活泼、直观形象、且贴近他们生活的问题情境,会引起学生的极大关注,会有利于学生对内容的较深层次的理解;另一方面,学生已经具备了一定的学习能力,可多为学生创造自主学习、合作交流的机会,促使他们主动参与、积极探究。二、教学任务分析教学目标设计:知识目标:1、理解平面直角坐标系以及横轴、纵轴、原点、坐标等概念;2、认识并能画出平面直角坐标系;3、能在给定的直角坐标系中,由点的位置写出它的坐标。能力目标:1、通过画坐标系、由点找坐标等过程,发展学生的数形结合意识、合作交流意识;2、通过对一些点的坐标进行观察,探索坐标轴上点的坐标有什么特点,纵坐标或横坐标相同的点所连成的线段与两坐标轴之间的关系,培养学生的探索意识和能力。情感目标:由平面直角坐标系的有关内容,以及由点找坐标,反映平面直角坐标系与现实世界的密切联系,让学生认识数学与人类生活的密切联系和对人类历史发展的作用,提高学生参加数学学习活动的积极性和好奇心。教学重点:1、理解平面直角坐标系的有关知识;2、在给定的平面直角坐标系中,会根据点的位置写出它的坐标;3、由观察点的坐标、纵坐标或横坐标相同的点所连成的参考资料,少熬夜!线段与两坐标轴之间的关系,说明坐标轴上点的坐标有什么特点。教学难点:1、横(或纵)坐标相同的点的连线与坐标轴的关系的探究;2、坐标轴上点的坐标有什么特点的总结。三、教学过程设计第一环节感受生活中的情境,导入新课同学们,你们喜欢旅游吗?假如你到了某一个城市旅游,那么你应怎样确定旅游景点的位置呢?下面给出一张某市旅游景点的示意图,根据示意图(图5—6),回答以下问题:(1)你是怎样确定各个景点位置的?(2)“大成殿”在“中心广场”南、西各多少个格?“碑林”在“中心广场”北、东各多少个格?(3)如果以“中心广场”为原点作两条互相垂直的数轴,分别取向右、向上的方向为数轴的正方向,一个方格的边长看做一个单位长度,那么你能表示“碑林”的位置吗?“大成殿”的位置呢?在上一节课,我们已经学习了许多确定位置的方法,这个问题中,大家看用哪种方法比较合适?第二环节分类讨论,探索新知1、平面直角坐标系、横轴、纵轴、横坐标、纵坐标、原点的定义和象限的划分。学生自学课本,理解上述概念。2、例题讲解(出示投影)例1例1写出图中的多边形ABCDEF各顶点的坐标。平面直角坐标系:课后练习一、选择题(共9小题,每小题3分,满分27分)1、若点A(﹣2,n)在x轴上,则点B(n﹣1,n+1)在()A、第四象限B、第三象限C、第二象限D、第一象限考点点的坐标。专题计算题。分析由点在x轴的条件是纵坐标为0,得出点A(﹣2,n)的n=0,再代入求出点B的坐标及象限。解答解:∵点A(﹣2,n)在x轴上,∴n=0,∴点B的坐标为(﹣1,1)。则点B(n﹣1,n+1)在第二象限。故选C。点评本题主要考查点的坐标问题,解决本题的关键是掌握好四个象限的点的坐标的特征:第一象限正正,第二象限负正,第三象限负负,第四象限正负。2、已知点M到x轴的距离为3,到y轴的距离为2,且在参考资料,少熬夜!第三象限。则M点的坐标为()A、(3,2)B、(2,3)C、(﹣3,﹣2)D、(﹣2,﹣3)考点点的坐标。分析根据到坐标轴的距离判断出横坐标与纵坐标的长度,再根据第三象限的点的坐标特征解答。解答解:∵点M到x轴的距离为3,∴纵坐标的长度为3,∵到y轴的距离为2,∴横坐标的长度为2,∵点M在第三象限,∴点M的坐标为(﹣2,﹣3)。故选D。点评本题考查了点的坐标,难点在于到y轴的距离为横坐标的长度,到x轴的距离为纵坐标的长度,这是同学们容易混淆而导致出错的地方。平面直角坐标系同步测试题1.点A(3,—1)其中横坐标为XX,纵坐标为XX。2.过B点向x轴作垂线,垂足点坐标为—2,向y轴作垂线,垂足点坐标为5,则点B的坐标为。3.点P(—3,5)到x轴距离为XX,到y轴距离为XX。八年级数学上册教案【第二篇】一、学习目标:让学生了解多项式公因式的意义,初步会用提公因式法分解因式二、重点难点重点:能观察出多项式的公因式,并根据分配律把公因式提出来难点:让学生识别多项式的公因式。三、合作学习:公因式与提公因式法分解因式的概念。三个矩形的长分别为a、b、c,宽都是m,则这块场地的面积为ma+mb+mc,或m(a+b+c)既ma+mb+mc=m(a+b+c)由上式可知,把多项式ma+mb+mc写成m与(a+b+c)的乘积的形式,相当于把公因式m从各项中提出来,作为多项式ma+mb+mc的一个因式,把m从多项式ma+mb+mc各项中提出后形成的多项式(a+b+c),作为多项式ma+mb+mc的另一个因式,这种分解因式的方法叫做提公因式法。四、精讲精练例1、将下列各式分解因式:(1)3x+6;(2)7x2-21x;(3)8a3b2-12ab3c+abc(4)-24x3-12x2+28x.例2把下列各式分解因式:(1)a(x-y)+b(y-x);(2)6(m-n)3-12(n-m)2.(3)a(x-3)+2b(x-3)参考资料,少熬夜!通过刚才的练习,下面大家互相交流,总结出找公因式的一般步骤。首先找各项系数的____________________,如8和12的公约数是4.其次找各项中含有的相同的字母,如(3)中相同的字母有ab,相同字母的指数取次数最___________的。课堂练习1.写出下列多项式各项的公因式。(1)ma+mb2)4kx-8ky(3)5y3+20y2(4)a2b-2ab2+ab2.把下列各式分解因式(1)8x-72(2)a2b-5ab(3)4m3-6m2(4)a2b-5ab+9b(5)(p-q)2+(q-p)3(6)3m(x-y)-2(y-x)2五、小结:总结出找公因式的一般步骤。:首先找各项系数的大公约数,其次找各项中含有的相同的字母,相同字母的指数取次数最小的。注意:(a-b)2=(b-a)2六、作业1、教科书习题2、已知2x-y=1/3,xy=2,求2x4y3-x3y43、(-2)2012+(-2)20134、已知a-2b=2,,4-5b=6,求3a(a-2b)2-5(2b-a)3八年级数学上册教案【第三篇】一、学习目标:1.使学生了解运用公式法分解因式的意义;2.使学生掌握用平方差公式分解因式二、重点难点重点:掌握运用平方差公式分解因式。难点:将单项式化为平方形式,再用平方差公式分解因式;学习方法:归纳、概括、总结三、合作学习创设问题情境,引入新课在前两学时中我们学习了因式分解的定义,即把一个多项式分解成几个整式的积的形式,还学习了提公因式法分解因式,即在一个多项式中,若各项都含有相同的因式,即公因式,就可以把这个公因式提出来,从而将多项式化成几个因式乘积的形式。如果一个多项式的各项,不具备相同的因式,是否就不能分解因式了呢?当然不是,只要我们记住因式分解是多项式乘法的相反过程,就能利用这种关系找到新的因式分解的方法,本学时我们就来学习另外的一种因式分解的方法——公式法。1.请看乘法公式(a+b)(a-b)=a2-b2(1)参考资料,少熬夜!左边是整式乘法,右边是一个多项式,把这个等式反过来就是a2-b2=(a+b)(a-b)(2)左边是一个多项式,右边是整式的乘积。大家判断一下,第二个式子从左边到右边是否是因式分解?利用平方差公式进行的因式分解,第(2)个等式可以看作是因式分解中的平方差公式。a2-b2=(a+b)(a-b)2.公式讲解如x2-16=(x)2-42=(x+4)(x-4).9m2-4n2=(3m)2-(2n)2=(3m+2n)(3m-2n)四、精讲精练例1、把下列各式分解因式:(1)25-16x2;(2)9a2-b2.例2、把下列各式分解因式:(1)9(m+n)2-(m-n)2;(2)2x3-8x.补充例题:判断下列分解因式是否正确。(1)(a+b)2-c2=a2+2ab+b2-c2.(2)a4-1=(a2)2-1=(a2+1)•(a2-1).五、课堂练习教科书练习六、作业1、教科书习题2、分解因式:x4-16x3-4x4x2-(y-z)23、若x2-y2=30,x-y=-5求x+y初二数学上册教案【第四篇】教学目标1.会解简易方程,并能用简易方程解简单的应用题;2.通过代数法解简易方程进一步培养学生的运算能力,发展学生的应用意识;3.通过解决问题的实践,激发学生的学习兴趣,培养学生的钻研精神。教学建议一、教学重点、难点重点:简易方程的解法;难点:根据实际问题中的数量关系正确地列出方程并求解。二、重点、难点分析解简易方程的基本方法是:将方程两边同时加上(或减去)同一个适当的数;将方程两边同时乘以(或除以)同一个适当的数。最终求出问题的解。判断方程求解过程中两边加上(或减去)以及乘以(或除以)的同一个数是否“适当”,关键是看运算的第一步能否使方程参考资料,少熬夜!的一边只含有带有未知数的那个数,第二步能否使方程的一边只剩下未知数,即求出结果。列简易方程解应用题是以列代数式为基础的,关键是在弄清楚题目语句中各种数量的意义及相互关系的基础上,选取适当的未知数,然后把与数量有关的语句用代数式表示出来,最后利用题中的相等关系列出方程并求解。三、知识结构导入方程的概念解简易方程利用简易方程解应用题。四、教法建议(1)在本节的导入部分,须使学生理解的是算术运算只对已知数进行加、减、乘、除,而代数运算的优越性体现在未知数获得与已知数平等的地位,即同样可以和已知数进行加、减、乘、除运算。对于方程、方程的解、解方程的概念让学生了解即可。(2)解简易方程,要在学生积极参与的基础上,理解何种形式的方程在求解过程中方程两边选择加上(或减去)同一个数,以及何种形式的方程在求解过程中两边选择乘以(或除以)同一个数。另一个重要的问题就是“适当的数”的选择了。通常,整式方程并不需要检验,但为了学生从一开始就养成自我检查的好习惯,可以让学生在草稿纸上检验,同时也是对前面学过的求代数式的值的复习。(3)教材给出了三道应用题,其中例4是一道有关公式应用的方程问题。列简易方程解应用题,关键在引导学生加深对代数式的理解基础上,认真读懂题意,弄清楚题目中的关键语句所包含的各种数量的意义及相互关系。恰当地设未知数,用代数式表示数学语句,依据相等关系正确的列出方程并求解。(4)教学过程中,应充分发挥多媒体技术的辅助教学作用,可以参考运用相关课件提高学生的学习兴趣,加深对列简易方程解简单的应用题的整个分析、解决问题过程的理解。此外,通过应用投影仪、幻灯片可以提高课堂效率,有利于对知识点的掌握。五、列简易方程解应用题列简易方程解应用题的一般步骤(1)弄清题意和题目中的已知数、未知数,用字母(如x)表示题目中的一个未知数。(2)找出能够表示应用题全部含义的一个相等关系。(3)根据这个相等关系列出需要的代数式,从而列出方程。(4)解这个方程,求出未知数的值。(5)写出答案(包括单位名称).概括地说,列简易方程解应用题,一般有“设、列、解、验、答”五个步骤,审题可在草稿纸上进行。其中关键是“列”,即列出符合题意的方程。难点是找等量关系。要想抓住关键、突破难点,一定要开动脑筋,勤于思考、努力提高自己分析问题和解决问题的能力。
本文标题:八年级数学上册学习步骤与教案全集(最新4篇)
链接地址:https://www.777doc.com/doc-11484146 .html