您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 高三数学数列教案【热选4篇】
参考资料,少熬夜!高三数学数列教案【热选4篇】作为一无名无私奉献的教育工作者,时常要开展教案准备工作,编写教案助于积累教学经验,不断提高教学质量。那要怎么写好教案呢?以下是网友分享的高三数学数列教案【热选4篇】,仅供参考,大家一起来看看吧。高三数学数列教案【第一篇】如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,这个数列就叫做等比数列。这个常数叫做等比数列的公比,公比通常用字母q表示。(1)等比数列的通项公式是:An=A1×q^(n-1)若通项公式变形为an=a1/q-q^n(n∈N-),当q0时,则可把an看作自变量n的.函数,点(n,an)是曲线y=a1/q-q^x上的一群孤立的点。(2)任意两项am,an的关系为an=am·q^(n-m)(3)从等比数列的定义、通项公式、前n项和公式可以推出:a1·an=a2·an-1=a3·an-2=…=ak·an-k+1,k∈{1,2,…,n}(4)等比中项:aq·ap=ar^2,ar则为ap,aq等比中项。(5)等比求和:Sn=a1+a2+a3+.......+an①当q≠1时,Sn=a1(1-q^n)/(1-q)或Sn=(a1-an×q)÷(1-q)②当q=1时,Sn=n×a1(q=1)记πn=a1·a2…an,则有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1另外,一个各项均为正数的等比数列各项取同底数数后构成一个等差数列;反之,以任一个正数C为底,用一个等差数列的各项做指数构造幂Can,则是等比数列。在这个意义下,我们说:一个正项等比数列与等差数列是“同构”的。高三数学数列教案【第二篇】教学目标:明确等差数列的定义,掌握等差数列的通项公式,会解决知道an,a1,d,n中的三个,求另外一个的问题;培养学生观察能力,进一步提高学生推理、归纳能力,培养学生的'应用意识.教学重点:1.等差数列的概念的理解与掌握.2.等差数列的通项公式的推导及应用.教学难点:等差数列“等差”特点的理解、把握和应用.教学过程:Ⅰ.复习回顾上两节课我们共同学习了数列的定义及给出数列的两种方法——通项公式和递推公式.这两个公式从不同的角度反映数列的'特点,下面我们看这样一些例子Ⅱ.讲授新课10,8,6,4,2,…;21,21,22,22,23,23,24,24,252,2,2,2,2,…首先,请同学们仔细观察这些数列有什么共同的特点?是否可以写出这些数列的通项公参考资料,少熬夜!式?(引导学生积极思考,努力寻求各数列通项公式,并找出其共同特点)它们的共同特点是:从第2项起,每一项与它的前一项的“差”都等于同一个常数.也就是说,这些数列均具有相邻两项之差“相等”的特点.具有这种特点的数列,我们把它叫做等差数列.1.定义等差数列:一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d表示.2.等差数列的通项公式等差数列定义是由一数列相邻两项之间关系而得.若一等差数列{an}的首项是a1,公差是d,则据其定义可得:(n-1)个等式若将这n-1个等式左右两边分别相加,则可得:an-a1=(n-1)d即:an=a1+(n-1)d当n=1时,等式两边均为a1,即上述等式均成立,则对于一切n∈N-时上述公式都成立,所以它可作为数列{an}的通项公式.看来,若已知一数列为等差数列,则只要知其首项a1和公差d,便可求得其通项.由通项公式可类推得:am=a1+(m-1)d,即:a1=am-(m-1)d,则:an=a1+(n-1)d=am-(m-1)d+(n-1)d=am+(n-m)d.如:a5=a4+d=a3+2d=a2+3d=a1+4d请同学们来思考这样一个问题.如果在a与b中间插入一个数A,使a、A、b成等差数列,那么A应满足什么条件?由等差数列定义及a、A、b成等差数列可得:A-a=b-A,即:a=.反之,若A=,则2A=a+b,A-a=b-A,即a、A、b成等差数列.总之,A=a,A,b成等差数列.如果a、A、b成等差数列,那么a叫做a与b的等差中项.例题讲解[例1]在等差数列{an}中,已知a5=10,a15=25,求a25.思路一:根据等差数列的已知两项,可求出a1和d,然后可得出该数列的通项公式,便可求出a25.思路二:若注意到已知项为a5与a15,所求项为a25,则可直接利用关系式an=am+(n-m)d.这样可简化运算.思路三:若注意到在等差数列{an}中,a5,a15,a25也成等差数列,则利用等差中项关系式,便可直接求出a25的值.[例2](1)求等差数列8,5,2…的第20项.分析:由给出的三项先找到首项a1,求出公差d,写出通项公式,然后求出所要项答案:这个数列的第20项为-49.(2)-401是不是等差数列-5,-9,-13…的项?如果是,是第几项?分析:要想判断-401是否为这数列的一项,关键要求出通项公式,看是否存在正整数n,可使得an=-401.∴-401是这个数列的第100项.Ⅲ.课堂练习1.(1)求等差数列3,7,11,……的'第4项与第10项.(2)求等差数列10,8,6,……的第20项.(3)100是不是等差数列2,9,16,……的项?如果是,是第几项?如果不是,说明理由.2.在等差数列{an}中,(1)已知a4=10,a7=19,求a1与d;参考资料,少熬夜!(2)已知a3=9,a9=3,求a12.Ⅳ.课时小结通过本节学习,首先要理解与掌握等差数列的定义及数学表达式:an-an-1=d(n≥2).其次,要会推导等差数列的通项公式:an=a1+(n-1)d(n≥1),并掌握其基本应用.最后,还要注意一重要关系式:an=am+(n-m)d的理解与应用以及等差中项。Ⅴ.课后作业课本P39习题1,2,3,4高三数学数列教案【第三篇】一、课前检测1.在数列{an}中,an=1n+1+2n+1++nn+1,又bn=2anan+1,求数列{bn}的前n项的和.解:由已知得:an=1n+1(1+2+3++n)=n2,bn=2n2n+12=8(1n-1n+1)数列{bn}的前n项和为Sn=8[(1-12)+(12-13)+(13-14)++(1n-1n+1)]=8(1-1n+1)=8nn+1.2.已知在各项不为零的数列中,。(1)求数列的通项;(2)若数列满足,数列的前项的和为,求解:(1)依题意,,故可将整理得:所以即,上式也成立,所以(2)二、知识梳理(一)前n项和公式Sn的定义:Sn=a1+a2+an。(二)数列求和的方法(共8种)5.错位相减法:适用于差比数列(如果等差,等比,那么叫做差比数列)即把每一项都乘以的公比,向后错一项,再对应同次项相减,转化为等比数列求和。如:等比数列的前n项和就是用此法推导的.解读:6.累加(乘)法解读:7.并项求和法:一个数列的前n项和中,可两两结合求解,则称之为并项求和.形如an=(-1)nf(n)类型,可采用两项合并求。解读:8.其它方法:归纳、猜想、证明;周期数列的求和等等。解读:三、典型例题分析题型1错位相减法例1求数列前n项的和.解:由题可知{}的通项是等差数列{2n}的通项与等比数列{}的通项之积参考资料,少熬夜!设①②(设制错位)①-②得(错位相减)变式训练1(20xx昌平模拟)设数列{an}满足a1+3a2+32a3++3n-1an=n3,nN*.(1)求数列{an}的通项公式;(2)设bn=nan,求数列{bn}的`前n项和Sn.解:(1)∵a1+3a2+32a3++3n-1an=n3,①当n2时,a1+3a2+32a3++3n-2an-1=n-13.②①-②得3n-1an=13,an=13n.在①中,令n=1,得a1=13,适合an=13n,an=13n.(2)∵bn=nan,bn=n3n.Sn=3+232+333++n3n,③3Sn=32+233+334++n3n+1.④④-③得2Sn=n3n+1-(3+32+33++3n),即2Sn=n3n+1-3(1-3n)1-3,Sn=(2n-1)3n+14+34.小结与拓展:题型2并项求和法例2求=1002-992+982-972++22-12解:=1002-992+982-972++22-12=(100+99)+(98+97)++(2+1)=5050.变式训练2数列{(-1)nn}的前20xx项的和S2010为(D)A.-20xxB.-1005解:S2010=-1+2-3+4-5++2008-2009+2010=(2-1)+(4-3)+(6-5)++(2010-2009)=1005.小结与拓展:题型3累加(乘)法及其它方法:归纳、猜想、证明;周期数列的求和等等例3(1)求之和.(2)已知各项均为正数的数列{an}的前n项的乘积等于Tn=(nN*),,则数列{bn}的前n项和Sn中最大的一项是(D)解:(1)由于(找通项及特征)=(分组求和)===(2)D.变式训练3(1)(20xx福州八中)已知数列则,。答案:100.5000。(2)数列中,,且,则前20xx项的和等于(A)小结与拓展:四、归纳与总结(以学生为主,师生共同完成)以上一个8种方法虽然各有其特点,但总的原则是要善于改变原数列的形式结构,使参考资料,少熬夜!其能进行消项处理或能使用等差数列或等比数列的求和公式以及其它已知的基本求和公式来解决,只要很好地把握这一规律,就能使数列求和化难为易,迎刃而解。高三数学数列教案【第四篇】一、教材分析1、教材的地位和作用:数列是高中数学重要内容之一,它不仅有着广泛的实际应用,而且起着承前启后的作用。一方面,数列作为一种特殊的函数与函数思想密不可分;另一方面,学习数列也为进一步学习数列的极限等内容做好准备。而等差数列是在学生学习了数列的有关概念和给出数列的两种方法——通项公式和递推公式的基础上,对数列的知识进一步深入和拓广。同时等差数列也为今后学习等比数列提供了学习对比的依据。2、教学目标根据教学大纲的要求和学生的实际水平,确定了本次课的教学目标a在知识上:理解并掌握等差数列的概念;了解等差数列的通项公式的推导过程及思想;初步引入“数学建模”的思想方法并能运用。b在能力上:培养学生观察、分析、归纳、推理的能力;在领会函数与数列关系的前提下,把研究函数的方法迁移来研究数列,培养学生的知识、方法迁移能力;通过阶梯性练习,提高学生分析问题和解决问题的能力。c在情感上:通过对等差数列的研究,培养学生主动探索、勇于发现的求知精神;养成细心观察、认真分析、善于总结的良好思维习惯。3、教学重点和难点根据教学大纲的要求我确定本节课的教学重点为:①等差数列的概念。②等差数列的通项公式的推导过程及应用。由于学生第一次接触不完全归纳法,对此并不熟悉因此用不完全归纳法推导等差数列的同项公式是这节课的一个难点。同时,学生对“数学建模”的思想方法较为陌生,因此用数学思想解决实际问题是本节课的另一个难点。二、学情教法分析:对于三中的高一学生,知识经验已较为丰富,他们的智力发展已到了形式运演阶段,具备了教强的抽象思维能力和演绎推理能力,所以我在授课时注重引导、启发、研究和探讨以符合这类学生的心理发展特点,从而促进思维能力的进一步发展。针对高中生这一思维特点和心理特征,本节课我采用启发式、讨论式以及讲练结合的教学方法,通过问题激发学生求知欲,使学生主动参与数学实践活动,以独立思考和相互交流的形式,在教师的指导下发现、分析和解决问题。三、学法指导:参考资料,少熬夜!在引导分析时,留出学生的思考空间,让学生去联想、探索,同时鼓励学生大胆质疑,围绕中心各抒己见,把思路方法和需要解决的问题弄清。四、教学程序本节课的教学过程由(一)复习引入(二)新课探究(三)应用举例(四)反馈练习(五)归纳小结(六)布置作业,六个教学环节构成。(一)复习引入:1.从函数观点看,数列可看作是定义域为__________对应的一列函数值,从而数列的通项公式也就是相应函数的______。(N﹡;解析式)通过练习1复习上节内容,为本节课用
本文标题:高三数学数列教案【热选4篇】
链接地址:https://www.777doc.com/doc-11590000 .html