您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 初中年级数学教学设计:完全平方公式【汇编5篇】
好文供参考!1/22初中年级数学教学设计:完全平方公式【汇编5篇】【引读】这篇优秀的文档“初中年级数学教学设计:完全平方公式【汇编5篇】”由网友上传分享,供您参考学习使用,希望此文对您有所帮助,喜欢的话就分享给下载吧!《完全平方公式》教案【第一篇】一、教材分析完全平方公式是初中代数的一个重要组成部分,是学生在已经掌握单项式乘法、多项式乘法及平方差公式基础上的拓展,对以后学习因式分解、解一元二次方程、配方法、勾股定理及图形面积计算都有举足轻重的作用。本节课是继乘法公式的内容的一种升华,起着承上启下的作用。在内容上是由多项式乘多项式而得到的,同时又为下一节课打下了基础,环环相扣,层层递进。通过这节课的学习,可以培养学生探索与归纳能力,体会到从简单到复杂,从特殊到一般和转化等重要的思想方法。二、学情分析多数学生的抽象思维能力、逻辑思维能力、数学化能力有限,理解完全平方公式的几何解释、推导过程、结构特点有一定困难。所以教学中应尽可能多地让学生动手操作,突出完全好文供参考!2/22平方公式的探索过程,自主探索出完全平方公式的基本形式,并用语言表述其结构特征,进一步发展学生的合情推理能力、合作交流能力和数学化能力。三、教学目标知识与技能利用添括号法则灵活应用乘法公式。过程与方法利用去括号法则得到添括号法则,培养学生的逆向思维能力。情感态度与价值观鼓励学生算法多样化,培养学生多方位思考问题的习惯,提高学生的合作交流意识和创新精神。四、教学重点难点教学重点理解添括号法则,进一步熟悉乘法公式的合理利用。教学难点在多项式与多项式的乘法中适当添括号达到应用公式的目的。五、教学方法思考分析、归纳总结、练习、应用拓展等环节。六、教学过程设计师生活动好文供参考!3/22设计意图一.提出问题,创设情境请同学们完成下列运算并回忆去括号法则.(1)4+(5+2)(2)4-(5+2)(3)a+(b+c)(4)a-(b-c)去括号法则:去括号时,如果括号前是正号,去掉括号后,括号里的每一项都不改变符合;如果括号前是负号,去掉括号后,括号里的各项都改变符合.也就是说,遇“加”不变,遇“减”都变.二、探究新知把上述四个等式的左右两边反过来,又会得到什么结果呢?(1)4+5+2=4+(5+2)(2)4-5-2=4-(5+2)(3)a+b+c=a+(b+c)(4)a-b+c=a-(b-c)左边没括号,右边有括号,也就是添了括号,同学们可不可以总结出添括号法则来呢?(学生分组讨论,最后总结)添括号法则是:添括号时,如果括号前面是正号,括到括号里的。各项都不变符号;如果括号前面是负号,括到括号里的各项都改变符号.也是:遇“加”不变,遇“减”都变.请同学们利用添括号法则完成下列练习:好文供参考!4/221.在等号右边的括号内填上适当的项:(1)a+b-c=a+()(2)a-b+c=a-()(3)a-b-c=a-()(4)a+b+c=a-()判断下列运算是否正确.(1)2a-b-=2a-(b-)(2)m-3n+2a-b=m+(3n+2a-b)(3)2x-3y+2=-(2x+3y-2)(4)a-2b-4c+5=(a-2b)-(4c+5)总结:添括号法则是去括号法则反过来得到的,无论是添括号,还是去括号,运算前后代数式的值都保持不变,所以我们可以用去括号法则验证所添括号后的代数式是否正确.三、新知运用有些整式相乘需要先作适当的变形,然后再用公式,这就需要同学们理解乘法公式的结构特征和真正内涵.请同学们分组讨论,完成下列计算.例:运用乘法公式计算(1)(x+2y-3)(x-2y+3)(2)(a+b+c)2(3)(x+3)2-x2(4)(x+5)2-(x-2)(x-3)四.随堂练习:1.课本P111练习2.《学案》101页——巩固训练五、课堂小结:通过本节课的学习,你有何收获和体会?好文供参考!5/22我们学会了去括号法则和添括号法则,利用添括号法则可以将整式变形,从而灵活利用乘法公式进行计算.我体会到了转化思想的重要作用,学数学其实是不断地利用转化得到新知识,比如由繁到简的转化,由难到易的转化,由已知解决未知的转化等等.六、检测作业习题:必做题:3、4、5题选做题:7题知识梳理,教学导入,激发学生的学习热情交流合作,探究新知,以问题驱动,层层深入。归纳总结,提升课堂效果。作业检测,检测目标的达成情况。《完全平方公式》教案【第二篇】学习任务1、了解完全平方公式的特征,会用完全平方公式进行因式分解。2、通过整式乘法逆向得出因式分解方法的过程,发展学生逆向思维能力和推理能力。3、通过猜想、观察、讨论、归纳等活动,培养学生观察能力,实践能力和创新能力。学习建议教学重点:好文供参考!6/22运用完全平方公式分解因式。教学难点:掌握完全平方公式的特点。教学资源使用电脑、投影仪。学习过程学习要求自学准备与知识导学:1、计算下列各式:⑴(a+4)2=__________________⑵(a-4)2=__________________⑶(2x+1)2=__________________⑷(2x-1)2=__________________下面请你根据上面的等式填空:⑴a2+8a+16=_____________⑵a2-8a+16=_____________⑶4x2+4x+1=_____________⑷4x2-4x+1=_____________问题:对比以上两题,你有什么发现?2、把乘法公式(a+b)2=a2+2ab+b2和(a-b)2=a2-2ab+b2反过来就得到__________________和__________________,这两个等式就是因式分解中的完全平方公式。它们有什么特征?若用△代表a,○代表b,两式可表示为好文供参考!7/22△2+2△×○+○2=(△+○)2,△2-2△×○+○2=(△-○)2.3、a2-4a-4符合公式左边的特征吗?为什么?4、填空:a2+6a+9符合吗?______相当于a,______相当于b.a2+6a+9=a2+2()()+()2=()2a2-6a+9=a2-2()()+()2=()2可以把形如a2+2ab+b2与a2-2ab+b2的多项式通过完全平方公式进行因式分解。学习交流与问题研讨:1、例题一(准备好,跟着老师一起做!)把下列各式分解因式:⑴x2+10x+25⑵4a2-36ab+81b22、例题二(有困难,大家一起讨论吧!)把下列各式分解因式:⑴16a4+8a2+1⑵(m+n)2-4(m+n)+43、变式训练:若把16a4+8a2+1变形为16a4-8a2+1会怎么样呢?4、运用平方差公式、完全平方公式,把一个多项式分解因式的方法叫做运用公式法。分析:重点是指出什么相当于公式中的a、b,并适当的改写为公式的形式。分析:许多情况下,不一定能直接使用公式,需要经过适当的组合,变形成公式的'形式。强调:分解因式必须分解到每一个因式都不能再分为止。练习检测与拓展延伸:好文供参考!8/221、巩固练习⑴下列能直接用完全平方公式分解的是()A、x2+2xy-y2B、-x2+2xy+y2C、x2+xy+y2D、x2-xy+y2⑵分解因式:-a2+2ab-b2=_________,-a2-2ab-b2=_________.⑶课本P75练一练1、2.2、提升训练⑴简便计算:20042-4008×20xx+20052⑵已知a2-2a+b2+4b+5=0,求(a+b)20xx的值。⑶若把a2+6a+9误写为a2+6a+9-1即a2+6a+8如何分解?3、当堂测试补充习题P42-431、2、3、4.分析:许多情况下,不一定能直接使用公式,需要经过适当的组合,变形成公式的形式。课后反思或经验总结:1、本节课是在学生已经了解因式分解的意义,掌握了提公因式法、平方差公式的基础上进行教学的,是运用类比的方法,引导学生借助上一节课学习平方差公式分解因式的经验,探索因式分解的完全平方公式法,即先观察公式的特点,再直接根据公式因式分解。完全平方公式教学设计【第三篇】好文供参考!9/22教学目标1.了解公式的意义,使学生能用公式解决简单的实际问题;2.初步培养学生观察、分析及概括的能力;3.通过本节课的教学,使学生初步了解公式来源于实践又反作用于实践。教学建议一、教学重点、难点重点:通过具体例子了解公式、应用公式.难点:从实际问题中发现数量之间的关系并抽象为具体的公式,要注意从中反应出来的归纳的思想方法。二、重点、难点分析人们从一些实际问题中抽象出许多常用的、基本的数量关系,往往写成公式,以便应用。如本课中梯形、圆的面积公式。应用这些公式时,首先要弄清楚公式中的字母所表示的意义,以及这些字母之间的数量关系,然后就可以利用公式由已知数求出所需的未知数。具体计算时,就是求代数式的值了。有的公式,可以借助运算推导出来;有的公式,则可以通过实验,从得到的反映数量关系的一些数据(如数据表)出发,用数学方法归纳出来。用这些抽象出的具有一般性的公式解决一些问题,会给我们认识和改造世界带来很多方便。三、知识结构好文供参考!10/22本节一开始首先概述了一些常见的公式,接着三道例题循序渐进的讲解了公式的直接应用、公式的先推导后应用以及通过观察归纳推导公式解决一些实际问题。整节内容渗透了由一般到特殊、再由特殊到一般的辨证思想。四、教法建议1.对于给定的可以直接应用的公式,首先在给出具体例子的'前提下,教师创设情境,引导学生清晰地认识公式中每一个字母、数字的意义,以及这些数量之间的对应关系,在具体例子的基础上,使学生参与挖倔其中蕴涵的思想,明确公式的应用具有普遍性,达到对公式的灵活应用。2.在教学过程中,应使学生认识有时问题的解决并没有现成的公式可套,这就需要学生自己尝试探求数量之间的关系,在已有公式的基础上,通过分析和具体运算推导新公式。3.在解决实际问题时,学生应观察哪些量是不变的,哪些量是变化的,明确数量之间的对应变化规律,依据规律列出公式,再根据公式进一步地解决问题。这种从特殊到一般、再从一般到特殊认识过程,有助于提高学生分析问题、解决问题的能力。教学设计示例公式一、教学目标(一)知识教学点好文供参考!11/221.使学生能利用公式解决简单的实际问题.2.使学生理解公式与代数式的关系.(二)能力训练点1.利用数学公式解决实际问题的能力.2.利用已知的公式推导新公式的能力.(三)德育渗透点数学来源于生产实践,又反过来服务于生产实践.(四)美育渗透点数学公式是用简洁的数学形式来阐明自然规定,解决实际问题,形成了色彩斑斓的多种数学方法,从而使学生感受到数学公式的简洁美.二、学法引导1.数学方法:引导发现法,以复习提问小学里学过的公式为基础、突破难点2.学生学法:观察→分析→推导→计算三、重点、难点、疑点及解决办法1.重点:利用旧公式推导出新的图形的计算公式.2.难点:同重点.3.疑点:把要求的图形如何分解成已经熟悉的图形的和或差.四、课时安排1课时好文供参考!12/22五、教具学具准备投影仪,自制胶片。六、师生互动活动设计教者投影显示推导梯形面积计算公式的图形,学生思考,师生共同完成例1解答;教者启发学生求图形的面积,师生总结求图形面积的公式.七、教学步骤(一)创设情景,复习引入师:同学们已经知道,代数的一个重要特点就是用字母表示数,用字母表示数有很多应用,公式就是其中之一,我们在小学里学过许多公式,请大家回忆一下,我们已经学过哪些公式,教法说明,让学生一开始就参与课堂教学,使学生在后面利用公式计算感到不生疏.在学生说出几个公式后,师提出本节课我们应在小学学习的基础上,研究如何运用公式解决实际问题.板书:公式师:小学里学过哪些面积公式?板书:S=ah(出示投影1)。解释三角形,梯形面积公式教法说明让学生感知用割补法求图形的面积。数学《完全平方公式》教案【第四篇】好文供参考!13/22一、内容简介本节课的主题:通过一系列的探究活动,引导学生从计算结果中总结出完全平方公式的两种形式。关键信息:1、以教材作为出发点,依据《数学课程标准》,引导学生体会、参与科学探究过程。首先提
本文标题:初中年级数学教学设计:完全平方公式【汇编5篇】
链接地址:https://www.777doc.com/doc-11888454 .html