您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 高一数学教案(精编4篇)
参考资料,少熬夜!高一数学教案(精编4篇)【导读指引】三一刀客最漂亮的网友为您整理分享的“高一数学教案(精编4篇)”文档资料,供您学习参考,希望此文档对您有所帮助,喜欢就分享给朋友们吧!高一数学教学计划1一、教学分析1、分析教材本章教材整体主要分成三大部分:(1)、圆的标准方程与一般方程;(2)、直线与圆、圆与圆的位置关系;(3)、空间直角坐标系以及空间两点间的距离公式。圆的方程是在前一章直线方程基础上引入的新的曲线方程,更进一步要求“数与形”结合。所以学习有关圆的方程时,仍仍然沿用直线方程中使用的坐标法,继续运用坐标法研究直线与圆、圆与圆的位置关系等几何问题。此外还要学习空间直角坐标系的有关知识,以便为今后用坐标法研究空间几何对象奠定基础。这些知识是进一步学习圆锥曲线方程、导数和积分的基础。2、分析学生高中一年级的学生还没有建立起比较好的数形结合的思想,前面学习过直线知识,只是使学生有了用坐标法研究问题的基本思路,通过圆的概念的引入及其现实生活中圆的例子,启发学生学习的兴趣及研究问题的方法,培养学生分析探索问题的能力,熟练的掌握解决解析几何问题的方法-坐标法,渗透数形结合的思想研究问题时抓住问题的本质,研究细致思考,规范得出解答,体现运动变化,对立统一的思想3、教学重点与难点重点:圆的标准方程与一般方程;利用直线与圆的方程判断直线与圆、圆与圆的位置关系;空间直角坐标系的基本认识。难点:直线与圆的方程的应用;会求解简单的直线与圆的相关曲线的方程;建立空间直角坐标系。二、教学目标1、掌握圆的定义和圆标准方程、一般方程的概念;能根据圆的方程求圆心和半径,初步掌握求圆的方程的方法。2、掌握直线与圆的位置关系的判定。3、在进一步培养学生类比、数形结合、分类讨论和化归的数学思想方法的过程中,提高学生学习能力。4、培养学生科学探索精神、审美观和理论联系实际思想。三、教学策略1、教学模式本节内容是运用“问题解决”课堂教学模式的一次尝试,采用探究、讨论的教学方法,通过问题激发学生求知欲,使学生主动参与数参考资料,少熬夜!学实践活动,以独立思考和相互交流的形式,在教师的指导下发现、分析和解决问题,掌握数学基本知识和基本能力,培养积极探索和团结协作的科学精神。2、教学方法与手段--充分利用信息技术,合理整合课程资源采用探究、讨论的教学方法,通过问题激发学生求知欲采用多媒体技术,目的在于充分利用其优良的传播功能,大容量信息的呈现和生动形象的演示(尤其是动画效果)对提高学生学习兴趣、激活学生思维、加深概念理解有积极作用。制作中,采用交互技术,使课件的机动性得到加强。四、对内容安排的说明本章分三部分:圆的标准方程与一般方程;直线与圆、圆与圆的位置关系;空间直角坐标系。1、建立圆的方程是本节的主要内容之一。根据圆的几何特征(主要是动点与定点间距离恒定)建立适当的坐标系,再根据曲线上的点所满足的几何条件,求出点的坐标所满足的曲线方程。通过研究方程来研究曲线的性质是解析几何的另一个主要内容,这就是解析几何通过代数方法研究几何图形的特点,也就是坐标法。始终强调曲线方程与曲线图像之间的一一对应。这一思想应该贯穿于整个圆的教学。2、通过方程,研究直线与圆、圆与圆的位置关系是本章的主要内容之一。判断直线与圆、圆与圆的位置关系可以从两个方面着手:(1)。两条曲线有无公共点,等价于由它们方程联立的方程组有无实数解。方程组有几组实数解,这两条曲线就有几个公共点;方程组没有实数解,这两条曲线就没有公共点。(2)。运用平面几何知识,把直线与圆、圆与圆位置关系的结论转化为相应的代数结论。3、坐标法是研究几何问题的重要方法,在教学过程中,应该始终贯穿坐标法这一重要思想,不怕重复;通过坐标系,把点和坐标、曲线和方程联系起来,实现形和数的统一。用坐标法解决几何问题时,先用坐标和方程表示相应的几何对象,然后对坐标和方程进行代数讨论;最后再把代数运算结果翻译成相应的几何结论。这就是用坐标法解决平面几何问题的“三步曲”:第一步:建立适当的平面直角坐标系,用坐标和方程表示问题中涉及的几何元素,将平面几何问题转化为代数问题;第二步:通过代数运算,解决代数问题;第三步:把代数运算结果翻译成几何结论。五、教学评价㈠过程性评价1、教学过程中,教师的讲解和学生的练习紧扣教学目标,内容深浅要分层次,设计的问题要照顾好、中、差。2、对于方程的推导运用的方法,学生理解起来难度较大,参考资料,少熬夜!主要采用让学生理解的基础上进行检测反馈㈡终结性评价1、课程内容全部结束后,让学生分组交流、讨论后,选代表谈收获、体会和感想。2、留课后作业(扣教学目标、分类型、分层次,落实学生为主体),让学生认真理解和巩固,了解圆的标准方程和一般方程,以及直线与圆位置关系,做完课后习题,做好作业。高一数学下学期教学工作总结2回想半年的高一教学工作,有付出,有收获,有憧憬,有彷徨。一学期来,本人热爱本职工作,认真学习新的教育理论,广泛涉猎各种参考书,丰富知识,形成比较完整的知识结构,从而不断提高自己的教学水平和思想觉悟。严格要求学生,尊重学生,发扬教学民主,使学生学有所得,成绩不断提高。为了下一学年的教育工作做的更好,下面是本人的本学期的教学经验及教训。一、政治思想方面:认真学习新的教育理论,不断更新教育理念。积极参加新课改培训和校本培训,并做了大量的探索与反思。新的教育形式不允许我们在课堂上重复讲书,我们必须具有先进的教育观念,熟练掌握多媒体技术,才能适应教育的发展。所以我不但注重集体的理论学习,注意从书本中汲取营养,还认真学习多媒体制作知识,基本上掌握了Pt及flash和authorware制作课件,仔细体会新形势下怎样做一名好教师。二、教育教学方面:在新课标下,要学会用教材,理解课标,而不是教材,提高教学质量,关键是上好课。为了上好课,我做了下面的工作:1、课前准备:备好课。2、备教材备课标。认真钻研课程标准和教材,对教材的基本思想、基本概念吃透,了解教材的结构,重点与难点,掌握知识的逻辑,能运用自如,知道应如何处理教材和补充哪些资料,才能教好。3、备学生。我所教班的学生有较大的差别,了解学生原有的知识技能的质量,他们的兴趣、需要、方法、习惯,学习新知识可能会有哪些困难,采取相应的预防措施。4、备教法。考虑教法,解决如何把已掌握的教材传授给学生,包括如何组织教材、如何安排每节课的活动。本学期结合以前的教学,采用培养学生的自学能力和探究能力为主,对于高三学生,合理安排好课时很重要,如何让学生掌握课堂内容,不费功夫是很能达到的。以前多采用“抓”,“练”,在时间上抓紧和占用的同时,多增加练习,这提高成绩是很明显的,但学生的学习效率不高,也给其他科目造成作业无法认真的完成。所以本学期积极探索能够提高学生成绩的更好的方法。5、优化课堂。充分运用多媒体技术组织好课堂教学,增大课堂教学容量,参考资料,少熬夜!注意信息反馈,调动学生的有意注意,使其保持相对稳定性,同时,激发学生的情感,使他们产生愉悦的心境,创造良好的课堂气氛,课堂语言简洁明了,克服了以前重复的毛病,课堂提问面向全体学生,注意引发学生学数学的兴趣,课堂上讲练结合,布置好家庭作业,作业少而精,减轻学生的负担。6、要提高教学质量,还要做好课后辅导工作,虽然学生已是高三学生了,但在思想上是有较大的差别,还很爱好玩,缺乏自控能力,常在学习上不能按时完成作业,有的学生抄袭作业,学习不自觉,针对这些问题,就要抓好学生的思想教育,并使这一工作惯彻到对学生的学习指导中去,还要做好对学生学习的辅导和帮助工作,尤其在后进生的转化上,对后进生采取不同的方法,先全面了解学生的基本情况,争取准确的找出导致“差”的原因。在情感上温暖他们,取得他们的信任。从赞美着手,所有的人都渴望得到别人的理解和尊重,所以,和差生交谈时,对他的处境、想法表示深刻的理解和尊重;还有在批评学生时,注意阳光语言的使用,使他们真正意识到自己所犯的错误或自身存在的缺点。7、积极参与听课、评课,虚心向同行学习教学方法,博采众长,提高教学水平。8、热爱学生,平等的对待每一个学生,让他们都感受到老师的关心,良好的师生关系促进了学生的学习。三、工作考勤方面:我热爱自己的事业,从不因为个人的私事耽误工作的时间。全期没请过事假、病假,出满勤、干满点,并积极运用有效的工作时间做好自己分内的工作。社会对教师的素质要求更高,在今后的教育教学工作中,我将更严格要求自己,多方面提高自己的素质,努力工作,发扬优点,改正缺点,开拓前进。一份耕耘,一份收获。我将本着“勤学、善思、实干”的准则,一如既往,再接再厉,把工作搞得更好20xx-1-19高一数学教案3一、教学目标(1)了解含有“或”、“且”、“非”复合命题的概念及其构成形式;(2)理解逻辑联结词“或”“且”“非”的含义;(3)能用逻辑联结词和简单命题构成不同形式的复合命题;(4)能识别复合命题中所用的逻辑联结词及其联结的简单命题;(5)会用真值表判断相应的复合命题的真假;(6)在知识学习的基础上,培养学生简单推理的技能.二、教学重点难点:重点是判断复合命题真假的方法;难点是对“或”的含义参考资料,少熬夜!的理解.三、教学过程1.新课导入在当今社会中,人们从事任何工作、学习,都离不开逻辑.具有一定逻辑知识是构成一个公民的文化素质的重要方面.数学的特点是逻辑性强,特别是进入高中以后,所学的教学比初中更强调逻辑性.如果不学习一定的逻辑知识,将会在我们学习的过程中不知不觉地经常犯逻辑性的错误.其实,同学们在初中已经开始接触一些简易逻辑的知识.初一平面几何中曾学过命题,请同学们举一个命题的例子.(板书:命题.)(从初中接触过的“命题”入手,提出问题,进而学习逻辑的有关知识.)学生举例:平行四边形的对角线互相平.……(1)两直线平行,同位角相等.…………(2)教师提问:“……相等的角是对顶角”是不是命题?……(3)(同学议论结果,答案是肯定的.)教师提问:什么是命题?(学生进行回忆、思考.)概念总结:对一件事情作出了判断的语句叫做命题.(教师肯定了同学的回答,并作板书.)由于判断有正确与错误之分,所以命题有真假之分,命题(1)、(2)是真命题,而(3)是假命题.(教师利用投影片,和学生讨论以下问题.)例1判断以下各语句是不是命题,若是,判断其真假:命题一定要对一件事情作出判断,(3)、(4)没有对一件事情作出判断,所以它们不是命题.初中所学的命题概念涉及逻辑知识,我们今天开始要在初中学习的基础上,介绍简易逻辑的知识.2.讲授新课大家看课本(人教版,试验修订本,第一册(上))从第25页至26页例1前,并归纳一下这段内容主要讲了哪些问题?(片刻后请同学举手回答,一共讲了四个问题.师生一道归纳如下.)(1)什么叫做命题?可以判断真假的语句叫做命题.判断一个语句是不是命题,关键看这语句有没有对一件事情作出了判断,疑问句、祈使句都不是命题.有些语句中含有变量,如x2-5x+6=0中含有变量,在不给定变量的值之前,我们无法确定这语句的真假(这种含有变量的语句叫做“开语句”).(2)介绍逻辑联结词“或”、“且”、“非”.“或”、“且”、“非”这些词叫做逻辑联结词.逻辑联结词除这三种形式外,还有“若…则…”和“当且仅当”两种参考资料,少熬夜!形式.命题可分为简单命题和复合命题.不含逻辑联结词的命题叫做简单命题.简单命题是不含其他命题作为其组成部分(在结构上不能再分解成其他命题)的命题.由简单命题和逻辑联结词构成的命题叫做复合命题,如“6是自然数且是偶数”就是由简单命题“6是自然数”和“6是偶数”由逻辑联结词“且”构成的复合命题.(4)命题的表示:用p,q,r,s,……来表示.(教师根据学生回答的情况作补充和强调,特别是对复合命题的概念作出分析和展开.)我们接触的复合命题一般有“p或q”“p且q”、“非p”、“若p则q”等形式.给出一个含有“或”、“且”、“非”的复合命题,应能说出构成它的简单命题和弄清它所用的逻辑联结词;应能根据所给出的两个简单命题,写出含有逻辑联结词“或”、“且”、“非”的复合命题.对于给出“
本文标题:高一数学教案(精编4篇)
链接地址:https://www.777doc.com/doc-11921053 .html