您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 《等差数列》教案【范例4篇】
参考资料,少熬夜!《等差数列》教案【范例4篇】【导读指引】三一刀客最漂亮的网友为您整理分享的“《等差数列》教案【范例4篇】”文档资料,供您学习参考,希望此文档对您有所帮助,喜欢就分享给朋友们吧!等差数列教学设计【第一篇】教学目标:1.知识与技能目标:理解等差数列的概念,了解等差数列的通项公式的推导过程及思想,掌握并会用等差数列的通项公式,初步引入“数学建模”的思想方法并能运用。2.过程与方法目标:培养学生观察分析、猜想归纳、应用公式的能力;在领会函数与数列关系的前提下,渗透函数、方程的思想。3.情感态度与价值观目标:通过对等差数列的研究培养学生主动探索、勇于发现的求知的精神;养成细心观察、认真分析、善于总结的良好思维习惯。教学重点:等差数列的概念及通项公式。教学难点:(1)理解等差数列“等差”的特点及通项公式的含义。(2)等差数列的通项公式的推导过程及应用。教具:多媒体、实物投影仪教学过程:一、复习引入:1.回忆上一节课学习数列的定义,请举出一个具体的例子。表示数列有哪几种方法——列举法、通项公式、递推公式。我们这节课接着学习一类特殊的数列——等差数列。2.由生活中具体的数列实例引入(1).国际奥运会早期,撑杆跳高的记录近似的由下表给出:你能看出这4次撑杆条跳世界记录组成的数列,它的各项之间有什么关系吗?(2)某剧场前10排的座位数分别是:48、46、44、42、40、38、36、34、32、30引导学生观察:数列①、②有何规律?引导学生发现这些数字相邻两个数字的差总是一个常数,数列①先左到右相差,数列②从左到右相差-2。二。新课探究,推导公式1.等差数列的概念如果一个数列,从第二项开始它的每一项与前一项之差都等于同一常数,这个数列就叫等差数列,这个常数叫做等差数列的公差,通常用字母d来表示。强调以下几点:①“从第二项起”满足条件;②公差d一定是由后项减前项所得;参考资料,少熬夜!③每一项与它的前一项的差必须是同一个常数(强调“同一个常数”);所以上面的2、3都是等差数列,他们的公差分别为,-2。在学生对等差数列有了直观认识的基础上,我将给出练习题,以巩固知识的学习。[练习一]判断下列各组数列中哪些是等差数列,哪些不是?如果是,写出首项a1和公差d,如果不是,说明理由。,5,7,……√d=2,6,3,0,-3,……√d=-33.0,0,0,0,0,0,…….;√d=04.1,2,3,2,3,4,……;×5.1,0,1,0,1,……×在这个过程中我将采用边引导边提问的方法,以充分调动学生学习的积极性。2.等差数列通项公式如果等差数列{an}首项是a1,公差是d,那么根据等差数列的定义可得:a2-a1=d即:a2=a1+da3–a2=d即:a3=a2+d=a1+2da4–a3=d即:a4=a3+d=a1+3d……猜想:a40=a1+39d进而归纳出等差数列的通项公式:an=a1+(n-1)d此时指出:这种求通项公式的办法叫不完全归纳法,这种导出公式的方法不够严密,为了培养学生严谨的学习态度,在这里向学生介绍另外一种求数列通项公式的办法------迭加法:n=a1+(n-1)da2-a1=da3-a2=da4-a3=d……an–a(n-1)=d将这(n-1)个等式左右两边分别相加,就可以得到an-a1=(n-1)d即an=a1+(n-1)d(Ⅰ)当n=1时,(Ⅰ)也成立,所以对一切n∈N﹡,上面的公式(Ⅰ)都成立,因此它就是等差数列{an}的通项公式。三。应用举例例1求等差数列,12,8,4,0,…的第10项;20项;第30项;例2-401是不是等差数列-5,-9,-13,…的项?如果是,是第几项?四。反馈练习练习A组第1题和第2题(要求学生在规定时间内做完上参考资料,少熬夜!述题目,教师提问)。目的:使学生熟悉通项公式对学生进行基本技能训练。五。归纳小结提炼精华(由学生总结这节课的收获)1.等差数列的概念及数学表达式。强调关键字:从第二项开始它的每一项与前一项之差都等于同一常数2.等差数列的通项公式an=a1+(n-1)d会知三求一六。课后作业运用巩固必做题:课本P284习题A组第3,4,5题数学等差数列教案【第二篇】[教学目标]1、知识与技能目标:掌握等差数列的概念;理解等差数列的通项公式的推导过程;了解等差数列的函数特征;能用等差数列的通项公式解决相应的一些问题。2、过程与方法目标:让学生亲身经历“从特殊入手,研究对象的性质,再逐步扩大到一般”这一研究过程,培养他们观察、分析、归纳、推理的能力。通过阶梯性的强化练习,培养学生分析问题解决问题的能力。3、情感态度与价值观目标:通过对等差数列的研究,培养学生主动探索、勇于发现的求索精神;使学生逐步养成细心观察、认真分析、及时总结的好习惯。[教学重难点]1、教学重点:等差数列的概念的理解,通项公式的推导及应用。2、教学难点:(1)对等差数列中“等差”两字的把握;(2)等差数列通项公式的推导。[教学过程]一。课题引入创设情境引入课题:(这节课我们将学习一类特殊的数列,下面我们看这样一些例子)二、新课探究(一)等差数列的定义1、等差数列的定义如果一个数列从第二项起,每一项与前一项的差等于同一个常数,那么这个数列就叫等差数列。这个常数叫做等差数列的公差,通常用字母d来表示。(1)定义中的关健词有哪些?(2)公差d是哪两个数的差?(二)等差数列的通项公式探究1:等差数列的通项公式(求法一)如果等差数列首项是,公差是,那么这个等差数列如何表示?呢?参考资料,少熬夜!根据等差数列的定义可得:因此等差数列的通项公式就是:,探究2:等差数列的通项公式(求法二)根据等差数列的定义可得:将以上-1个式子相加得等差数列的通项公式就是:,三、应用与探索例1、(1)求等差数列8,5,2,…,的第20项。(2)等差数列-5,-9,-13,…,的第几项是–401?(2)、分析:要判断-401是不是数列的项,关键是求出通项公式,并判断是否存在正整数n,使得成立,实质上是要求方程的正整数解。例2、在等差数列中,已知=10,=31,求首项与公差d.解:由,得。在应用等差数列的通项公式an=a1+(n-1)d过程中,对an,a1,n,d这四个变量,知道其中三个量就可以求余下的一个量,这是一种方程的思想。巩固练习1、等差数列{an}的前三项依次为a-6,-3a-5,-10a-1,则a=()。2、一张梯子最高一级宽33cm,最低一级宽110cm,中间还有10级,各级的宽度成等差数列。求公差d。四、小结1、等差数列的通项公式:公差;2、等差数列的计算问题,通常知道其中三个量就可以利用通项公式an=a1+(n-1)d,求余下的一个量;3、判断一个数列是否为等差数列只需看是否为常数即可;4、利用从特殊到一般的思维去发现数学系规律或解决数学问题。五、作业:1、必做题:课本第40页习题第1,3,5题2、选做题:如何以最快的速度求:1+2+3+???+100=高中数学等差数列教案大全【第三篇】等差数列的教学设计教学理念:数学教学是思维过程的教学,如何引导学生参与到教学过程中来,尤其是在思维上深层次的参与,是促进学生良好的认知结构,培养能力,全面提高素质的关键。数学教学中的探究式对培养和提高学生的自主性、能动性和创造性有着非常重要的意义。设计思想:本节借助多媒体辅助手段,创设问题的情境,让探究式教学走进课堂,保障学生的主体地位,唤醒学生的主体意识,发展学生的主体能力,塑造学生的主体人格,让学生在参与中学会学习、学会合作、学会创新。一、教材分析:高考资源网参考资料,少熬夜!教学内容:高中数学必修第五模块第二章第二节,等差数列,两课时内容,本节是第一课时,研究等差数列的定义、通项公式的推导,借助生活中丰富的典型实例,让学生通过分析、推理、归纳等活动过程,从中了解和体验等差数列的定义和通项公式。教学地位:本节是第二章的基础,为以后学习等差数列的求和、等比数列奠定基础,是本章的重点内容。在高考中也是重点考察内容之一,并且在实际生活中有着广泛的应用,它起着承前启后的作用。同时也是培养学生数学能力的良好题材。等差数列是学生探究特殊数列的开始,它对后续内容的学习,无论在知识上,还是在方法上都具有积极的意义。高考资源网教学重点:理解等差数列概念,探索并掌握等差数列的通项公式,会用公式解决一些简单的问题,体会等差数列与一次函数之间的关系。教学难点:对等差数列概念的理解及从函数、方程角度理解通项公式,概括通项公式推导过程中体现出的数学思想方法。二、学习者分析:高二学生已经具有一定的理性分析能力和概括能力,且对数列的知识有了初步的接触和认识,对数学公式的运用已具备一定的技能,已经熟悉由观察到抽象的数学活动过程,对函数、方程思想体会逐渐深刻。他们的思维正从属于经验性的逻辑思维向抽象思维发展,但仍需要依赖一定的具体形象的经验材料来理解抽象的逻辑关系。三、教学目标:高考资源网知识目标:理解等差数列定义,掌握等差数列的通项公式。能力目标:高考资源网培养学生观察、归纳能力,在学习过程中,体会数形结合思想、归纳思想和化归思想并加深认识;通过概念的引入与通项公式的推导,培养学生分析探索能力,增强运用公式解决实际问题的能力。情感目标:①通过个性化的学习增强学生的自信心和意志力。②通过师生、生生的合作学习,增强学生团队协作能力的培养,增强主动与他人合作交流的意识。③体验从特殊到一般,又到特殊的认知规律,培养学生勇于创新的科学精神。四、教法和学法的分析:高考资源网通过探究式教学方法充分利用现实情景,尽可能的增加教学过程的趣味性、实践性。利用多媒体课件和实例等丰富学生的学习资源,强调学生动手操作试验和主动参与,在教师的启发指导下,让学生自己去分析、探索,在探索过程中研究和参考资料,少熬夜!领悟得出的结论,从而使学生即获得知识又发展智能的目的。2、在学法上,引导学生多角度,多层面认识事物,学会探究。教师是学生的学习的组织者、促进着、合作者,在本节课的备课和教学过程中,为学生的动手实践,自主探索与合作交流的机会搭建平台,鼓励学生提出自己的见解,学会提出问题解决问题,通过恰当的教学方式让学生学会自我调适,自我选择。五、教学媒体和教学技术的选用多媒体计算机和几何画板通过计算机模拟演示,使学生获得感性知识的同时,为掌握理性知识创造条件,这样做,可以使学生有兴趣地学习,注意力也容易集中,符合教学论中的直观性原则和可接受性原则。本节课打破传统的一言堂的格局代之以人为本、民主、开放、特色和建立在信息网络平台上的现代教学格局。六、教学程序:(一)设置问题,引导发现形成概念w。师:看大屏幕。高考资源网情景1(播放奥运会女子举重场面)2008年北京奥运会,女子举重共设置7个级别,其中较轻的4个级别体重组成数列(单位:kg):48,53,58,63情景2水库的管理员为了保证优质鱼类有良好的生活环境,定期放水清库的办法清理水库中的杂鱼。如果一个水库的水位18m,自然放水每天水位下降,最低降至5m。那么从开始放水算起,到可以进行清理工作的那天,水库每天的水位组成数列(单位:m)18,,13,,8,情景3我国现行储蓄制度规定银行支付存款利息的方式为单利,即不把利息加入本金计算下一期的利息。按照单利计算本利和的公式是:本利和=本金(1+利率存期)时间年初本金(元)年末本利和(元)第1年1000010072第2年1000010144第3年1000010216第4年1000010288第5年1000010360例如,按活期存入10000元,年利率是%,那么按照单利,5年内各年末本利和分别是:如下表(假设5年既不加存款也不取款,且不扣利息税)各年末本利和(单位:元)高考资源网10072,10144,10216,10288,10360师:思考上述各组数据反映了什么样的信息?每行数有何共同特点?请同学们互相讨论。(学生纷纷议论,有的几个人在一起商量)高考资源网(从宏观上:情景1让学生体验成功申办奥运会的喜悦心情,激发勇于拼搏的坚强意志;情景2让学生认识到保护水资源,保护生态平衡的意识;情景3倡导节约意识,
本文标题:《等差数列》教案【范例4篇】
链接地址:https://www.777doc.com/doc-11971013 .html