您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 资本运营 > 八年级几何辅助线专题训练
-1-常见的辅助线的作法1.等腰三角形“三线合一”法:遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题2.倍长中线:倍长中线,使延长线段与原中线长相等,构造全等三角形3.角平分线在三种添辅助线:(1)可以自角平分线上的某一点向角的两边作垂线,(2)可以在角平分线上的一点作该角平分线的垂线与角的两边相交,形成一对全等三角形。(3)可以在该角的两边上,距离角的顶点相等长度的位置上截取二点,然后从这两点再向角平分线上的某点作边线,构造一对全等三角形。4.垂直平分线联结线段两端:在垂直平分线上的某点向该线段的两个端点作连线,出一对全等三角形。5.用“截长法”或“补短法”:遇到有二条线段长之和等于第三条线段的长,6.图形补全法:有一个角为60度或120度的把该角添线后构成等边三角形.7.角度数为30度、60度的作垂线法:遇到三角形中的一个角为30度或60度,可以从角一边上一点向角的另一边作垂线,目的是构成30-60-90的特殊直角三角形,然后计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角。从而为证明全等三角形创造边、角之间的相等条件。8.面积方法:在求有关三角形的定值一类的问题时,常把某点到原三角形各顶点的线段连接起来,利用三角形面积的知识解答.-2-DCBAEDFCBA一、等腰三角形“三线合一”法1.如图,已知△ABC中,∠A=90°,AB=AC,BE平分∠ABC,CE⊥BD于E,求证:CE=BD.中考连接:(2014•扬州,第7题,3分)如图,已知∠AOB=60°,点P在边OA上,OP=12,点M,N在边OB上,PM=PN,若MN=2,则OM=()A.3B.4C.5D.6二、倍长中线(线段)造全等例1、(“希望杯”试题)已知,如图△ABC中,AB=5,AC=3,则中线AD的取值范围是_________.例2、如图,△ABC中,E、F分别在AB、AC上,DE⊥DF,D是中点,试比较BE+CF与EF的大小.例3、如图,△ABC中,BD=DC=AC,E是DC的中点,求证:AD平分∠BAE.EDCBA-3-OEDCBAABC中考连接:(09崇文)以的两边AB、AC为腰分别向外作等腰Rt和等腰RtACE,90,BADCAE连接DE,M、N分别是BC、DE的中点.探究:AM与DE的关系.(1)如图①当ABC为直角三角形时,AM与DE的位置关系是,线段AM与DE的数量关系是;(2)将图①中的等腰RtABD绕点A沿逆时针方向旋转(090)后,如图②所示,(1)问中得到的两个结论是否发生改变?并说明理由.三、借助角平分线造全等1、如图,已知在△ABC中,∠B=60°,△ABC的角平分线AD,CE相交于点O,求证:OE=OD-4-2、如图,已知点C是∠MAN的平分线上一点,CE⊥AB于E,B、D分别在AM、AN上,且AE=(AD+AB).问:∠1和∠2有何关系?中考连接:(2012年北京)如图①,OP是∠MON的平分线,请你利用该图形画一对以OP所在直线为对称轴的全等三角形。请你参考这个作全等三角形的方法,解答下列问题:(1)如图②,在△ABC中,∠ACB是直角,∠B=60°,AD、CE分别是∠BAC、∠BCA的平分线,AD、CE相交于点F。请你判断并写出FE与FD之间的数量关系;(2)如图③,在△ABC中,如果∠ACB不是直角,而(1)中的其它条件不变,请问,你在(1)中所得结论是否仍然成立?若成立,请证明;若不成立,请说明理由。OPAMNEBCDFACEFBD图①图②图③-5-EDGFCBA四,垂直平分线联结线段两端1.(2014•广西贺州,第17题3分)如图,等腰△ABC中,AB=AC,∠DBC=15°,AB的垂直平分线MN交AC于点D,则∠A的度数是.2、如图,△ABC中,AD平分∠BAC,DG⊥BC且平分BC,DE⊥AB于E,DF⊥AC于F.(1)说明BE=CF的理由;(2)如果AB=a,AC=b,求AE、BE的长.中考连接:(2014年广东汕尾,第19题7分)如图,在Rt△ABC中,∠B=90°,分别以点A、C为圆心,大于AC长为半径画弧,两弧相交于点M、N,连接MN,与AC、BC分别交于点D、E,连接AE.(1)求∠ADE;(直接写出结果)(2)当AB=3,AC=5时,求△ABE的周长.补充:尺规作图过直线外一点做已知直线的垂线-6-EDCBADCBAPQCBA五、截长补短1、如图,ABC中,AB=2AC,AD平分BAC,且AD=BD,求证:CD⊥AC2、如图,AD∥BC,EA,EB分别平分∠DAB,∠CBA,CD过点E,求证;AB=AD+BC。3、如图,已知在△ABC内,060BAC,040C,P,Q分别在BC,CA上,并且AP,BQ分别是BAC,ABC的角平分线。求证:BQ+AQ=AB+BP4、如图,在四边形ABCD中,BC>BA,AD=CD,BD平分ABC,求证:0180CA5.如图,已知正方形ABCD中,E为BC边上任意一点,AF平分∠DAE.求证:AE-BE=DF.CDBA-7-6.如图,△ABC中,∠ABC=60°,AD、CE分别平分∠BAC,∠ACB,判断AC的长与AE+CD的大小关系并证明.7.如图,Rt△ABC中,∠ACB=90°,CD⊥AB于D,AF平分∠CAB交CD于E,交CB于F,且EG∥AB交CB于G,判断CF与GB的大小关系并证明。六、综合-8-FEDCBANMEFACBA1、正方形ABCD中,E为BC上的一点,F为CD上的一点,BE+DF=EF,求∠EAF的度数.2、如图,ABC为等边三角形,点,MN分别在,BCAC上,且BMCN,AM与BN交于Q点。求AQN的度数。3、已知四边形ABCD中,ABAD,BCCD,ABBC,120ABC∠,60MBN∠,MBN∠绕B点旋转,它的两边分别交ADDC,(或它们的延长线)于EF,.当MBN∠绕B点旋转到AECF时(如图1),易证AECFEF.当MBN∠绕B点旋转到AECF时,在图2和图3这两种情况下,上述结论是否成立?若成立,请给予证明;若不成立,线段AECF,,EF又有怎样的数量关系?请写出你的猜想,不需证明.4、D为等腰RtABC斜边AB的中点,DM⊥DN,DM,DN分别交BC,CA于点E,F。(图1)ABCDEFMN(图2)ABCDEFMN(图3)ABCDEFMN-9-(1)当MDN绕点D转动时,求证DE=DF。(2)若AB=2,求四边形DECF的面积。5、在等边ABC的两边AB、AC所在直线上分别有两点M、N,D为ABC外一点,且60MDN,120BDC,BD=DC.探究:当M、N分别在直线AB、AC上移动时,BM、NC、MN之间的数量关系及AMN的周长Q与等边ABC的周长L的关系.图1图2图3(I)如图1,当点M、N边AB、AC上,且DM=DN时,BM、NC、MN之间的数量关系是;此时LQ;(II)如图2,点M、N边AB、AC上,且当DMDN时,猜想(I)问的两个结论还成立吗?写出你的猜想并加以证明;(III)如图3,当M、N分别在边AB、CA的延长线上时,若AN=x,则Q=(用x、L表示).中考连接:(2014•抚顺第25题(12分))-10-已知:Rt△A′BC′≌Rt△ABC,∠A′C′B=∠ACB=90°,∠A′BC′=∠ABC=60°,Rt△A′BC′可绕点B旋转,设旋转过程中直线CC′和AA′相交于点D.(1)如图1所示,当点C′在AB边上时,判断线段AD和线段A′D之间的数量关系,并证明你的结论;(2)将Rt△A′BC′由图1的位置旋转到图2的位置时,(1)中的结论是否成立?若成立,请证明;若不成立,请说明理由;(3)将Rt△A′BC′由图1的位置按顺时针方向旋转α角(0°≤α≤120°),当A、C′、A′三点在一条直线上时,请直接写出旋转角的度数.参考答案与提示-11-DCBAEDFCBA一、倍长中线(线段)造全等例1、(“希望杯”试题)已知,如图△ABC中,AB=5,AC=3,则中线AD的取值范围是_________.解:延长AD至E使AE=2AD,连BE,由三角形性质知AB-BE2ADAB+BE故AD的取值范围是1AD4例2、如图,△ABC中,E、F分别在AB、AC上,DE⊥DF,D是中点,试比较BE+CF与EF的大小.解:(倍长中线,等腰三角形“三线合一”法)延长FD至G使FG=2EF,连BG,EG,显然BG=FC,在△EFG中,注意到DE⊥DF,由等腰三角形的三线合一知EG=EF在△BEG中,由三角形性质知EGBG+BE故:EFBE+FC例3、如图,△ABC中,BD=DC=AC,E是DC的中点,求证:AD平分∠BAE.EDCBA解:延长AE至G使AG=2AE,连BG,DG,显然DG=AC,∠GDC=∠ACD由于DC=AC,故∠ADC=∠DAC在△ADB与△ADG中,BD=AC=DG,AD=AD,-12-∠ADB=∠ADC+∠ACD=∠ADC+∠GDC=∠ADG故△ADB≌△ADG,故有∠BAD=∠DAG,即AD平分∠BAE应用:RtABD和等腰1、(09崇文二模)以的两边AB、AC为腰分别向外作等腰RtACE,90,BADCAE连接DE,M、N分别是BC、DE的中点.探究:AM与DE的位置关系及数量关系.(1)如图①当ABC为直角三角形时,AM与DE的位置关系是,线段AM与DE的数量关系是;(2)将图①中的等腰RtABD绕点A沿逆时针方向旋转(090)后,如图②所示,(1)问中得到的两个结论是否发生改变?并说明理由.解:(1)AMED2,EDAM;证明:延长AM到G,使AMMG,连BG,则ABGC是平行四边形∴BGAC,180BACABG又∵180BACDAE∴DAEABG再证:ABGDAE∴AMDE2,EDABAG延长MN交DE于H∵90DAHBAG∴90DAHHDA∴EDAM(2)结论仍然成立.证明:如图,延长CA至F,使FAAC,FA交DE于点P,并连接BF∵BADA,AFEA∴EADDAFBAF90∵在FAB和EAD中ABCGCHABDMNEFCPABDMNE-13-EDCBADABAEADBAFAEFA∴EADFAB(SAS)∴DEBF,AENF∴90AENAPEFFPD∴DEFB又∵AFCA,MBCM∴FBAM//,且FBAM21∴DEAM,DEAM21二、截长补短1、如图,ABC中,AB=2AC,AD平分BAC,且AD=BD,求证:CD⊥AC解:(截长法)在AB上取中点F,连FD△ADB是等腰三角形,F是底AB中点,由三线合一知DF⊥AB,故∠AFD=90°△ADF≌△ADC(SAS)∠ACD=∠AFD=90°即:CD⊥AC2、如图,AD∥BC,EA,EB分别平分∠DAB,∠CBA,CD过点E,求证;AB=AD+BC解:(截长法)在AB上取点F,使AF=AD,连FE△ADE≌△AFE(SAS)∠ADE=∠AFE,∠ADE+∠BCE=180°∠AFE+∠BFE=180°故∠ECB=∠EFB△FBE≌△CBE(AAS)-14-DCBAPQCBA故有BF=BC从而;AB=AD+BC3、如图,已知在△ABC内,060BAC,040C,P,Q分别在BC,CA上,并且AP,BQ分别是BAC,ABC的角平分线。求证:BQ+AQ=AB+BP解:(补短法,计算数值法)延长AB至D,使BD=BP,连DP在等腰△BPD中,可得∠BDP=40°从而∠BDP=40°=∠ACP△ADP≌△ACP(ASA)故AD=AC又∠QBC=40°=∠QCB故BQ=QCBD=BP从而BQ+AQ=AB+BP4、如图,在四边形ABCD中,BC>BA,AD=CD,BD平分ABC,求证:0180CA解
本文标题:八年级几何辅助线专题训练
链接地址:https://www.777doc.com/doc-1197695 .html