您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 高中数学集合的概念1.1.2课件人教版必修一
1、元素和集合的定义2、集合的特性3、元素和集合的关系4、集合的表示方法复习回顾实数有相等关系,大小关系,类比实数之间的关系,集合之间是否具备类似的关系?新课示例1:观察下面三个集合,找出它们之间的关系:A={1,2,3}C={1,2,3,4,5}B={1,2,7}1.子集一般地,对于两个集合,如果A中任意一个元素都是B的元素,称集合A是集合B的子集,记作AB.AB1.子集一般地,对于两个集合,如果A中任意一个元素都是B的元素,称集合A是集合B的子集,记作AB.读作“A包含于B”或“B包含A”.AB1.子集一般地,对于两个集合,如果A中任意一个元素都是B的元素,称集合A是集合B的子集,记作AB.读作“A包含于B”或“B包含A”.这时说集合A是集合B的子集.AB1.子集一般地,对于两个集合,如果A中任意一个元素都是B的元素,称集合A是集合B的子集,记作AB.读作“A包含于B”或“B包含A”.这时说集合A是集合B的子集.注意:①区分∈;②也可用.AB1.子集这时,我们说集合A是集合C的子集.A={1,2,3}C={1,2,3,4,5}B={1,2,7}1.子集),,(CACxAx则则若这时,我们说集合A是集合C的子集.而从B与C来看,显然B不包含于C.记为BC或CB.A={1,2,3}C={1,2,3,4,5}B={1,2,7}A={x|x是两边相等的三角形},B={x|x是等腰三角形},示例2:A={x|x是两边相等的三角形},B={x|x是等腰三角形},有AB,BA,则A=B.2.集合相等示例2:A={x|x是两边相等的三角形},B={x|x是等腰三角形},有AB,BA,则A=B.若AB,BA,则A=B.2.集合相等示例2:练习1:观察下列各组集合,并指明两个集合的关系①A=Z,B=N;③A={x|x2-3x+2=0},B={1,2}.②A={长方形},B={平行四边形方形};练习1:观察下列各组集合,并指明两个集合的关系①A=Z,B=N;AB③A={x|x2-3x+2=0},B={1,2}.②A={长方形},B={平行四边形方形};练习1:观察下列各组集合,并指明两个集合的关系①A=Z,B=N;ABAB③A={x|x2-3x+2=0},B={1,2}.②A={长方形},B={平行四边形方形};练习1:观察下列各组集合,并指明两个集合的关系①A=Z,B=N;A=BABAB③A={x|x2-3x+2=0},B={1,2}.②A={长方形},B={平行四边形方形};示例3:A={1,2,7},B={1,2,3,7},示例3:A={1,2,7},B={1,2,3,7},3.真子集如果AB,但存在元素x∈B,且x∈A,称A是B的真子集.示例3:A={1,2,7},B={1,2,3,7},3.真子集如果AB,但存在元素x∈B,且x∈A,称A是B的真子集.记作AB,或BA.示例4:考察下列集合,并指出集合中的元素是什么?A={(x,y)|x+y=2};B={x|x2+1=0,x∈R}.示例4:考察下列集合,并指出集合中的元素是什么?A={(x,y)|x+y=2};B={x|x2+1=0,x∈R}.A表示的是x+y=2上的所有的点;B没有元素.示例4:考察下列集合,并指出集合中的元素是什么?A={(x,y)|x+y=2};B={x|x2+1=0,x∈R}.A表示的是x+y=2上的所有的点;B没有元素.4.空集不含任何元素的集合为空集,记作.示例4:考察下列集合,并指出集合中的元素是什么?A={(x,y)|x+y=2};B={x|x2+1=0,x∈R}.A表示的是x+y=2上的所有的点;B没有元素.4.空集规定:空集是任何集合的子集,空集是任何集合的真子集.不含任何元素的集合为空集,记作.示例4:考察下列集合,并指出集合中的元素是什么?A={(x,y)|x+y=2};B={x|x2+1=0,x∈R}.A表示的是x+y=2上的所有的点;B没有元素.4.空集规定:空集是任何集合的子集,空集是任何集合的真子集.B是A的真子集.不含任何元素的集合为空集,记作.例1⑴写出集合{a,b}的所有子集;⑵写出所有{a,b,c}的所有子集;⑶写出所有{a,b,c,d}的所有子集.⑴{a},{b},{a,b},;⑵{a},{b},{c},{a,b},{a,b,c},{a,c},{b,c},;⑶{a},{b},{c},{d},{a,b},{b,c},{a,d},{a,c},{b,d},{c,d},{a,b,c},{a,b,d},{b,c,d},{a,d,c}{a,b,c,d},.例1⑴写出集合{a,b}的所有子集;⑵写出所有{a,b,c}的所有子集;⑶写出所有{a,b,c,d}的所有子集.一般地,集合A含有n个元素,则A的子集共有2n个,A的真子集共有2n-1个.例1⑴写出集合{a,b}的所有子集;⑵写出所有{a,b,c}的所有子集;⑶写出所有{a,b,c,d}的所有子集.A.3个B.4个C.5个D.6个A.3个B.4个C.5个D.6个A例2在以下六个写法中①{0}∈{0,1}②{0}③{0,-1,1}{-1,0,1}④⑤{}⑥{(0,0)}={0}.错误个数为()}2,1{}2{}1{}2,1{,,例3设集合A={1,a,b},B={a,a2,ab},若A=B,求实数a,b.例4已知A={x|x2-2x-3=0},B={x|ax-1=0},若BA,求实数a的值.课堂小结子集:AB任意x∈Ax∈B.真子集:ABx∈A,x∈B,但存在x0∈A且x0A.集合相等:A=BAB且BA.空集:.性质:①A,若A非空,则A.②AA.③AB,BCAC.课堂练习1.教科书7页练习第2、3题2.教科书12页习题1.1第5题
本文标题:高中数学集合的概念1.1.2课件人教版必修一
链接地址:https://www.777doc.com/doc-1199644 .html