您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 资本运营 > 第6章投资理论(2)资产组合理论与资本资产定价模型(投
投资学第6章投资理论(2):资产组合理论与资本资产定价模型投资学第6章26.1概述现代投资理论的产生以1952年3月Harry.M.Markowitz发表的《投资组合选择》为标志1962年,WillianSharpe对资产组合模型进行简化,提出了资本资产定价模型(Capitalassetpricingmodel,CAPM)1976年,StephenRoss提出了替代CAPM的套利定价模型(Arbitragepricingtheory,APT)。上述的几个理论均假设市场是有效的。人们对市场能够地按照定价理论的问题也发生了兴趣,1965年,EugeneFama在其博士论文中提出了有效市场假说(Efficientmarkethypothesis,EMH)投资学第6章36.2资产组合理论基本假设(1)投资者仅仅以期望收益率和方差(标准差)来评价资产组合(Portfolio)(2)投资者是不知足的和风险厌恶的,即投资者是理性的。(3)投资者的投资为单一投资期,多期投资是单期投资的不断重复。(4)投资者希望持有有效资产组合。投资学第6章46.2.1组合的可行集和有效集可行集与有效集可行集:资产组合的机会集合(Portfolioopportunityset),即资产可构造出的所有组合的期望收益和方差。有效组合(Efficientportfolio):给定风险水平下的具有最高收益的组合或者给定收益水平下具有最小风险的组合。每一个组合代表一个点。有效集(Efficientset):又称为有效边界(Efficientfrontier),它是有效组合的集合(点的连线)。投资学第6章5两种风险资产构成的组合的风险与收益若已知两种资产的期望收益、方差和它们之间的相关系数,则由上一章的结论可知两种资产构成的组合之期望收益和方差为11222222211221212222211221212121211112222211112111212221()(1)()(1)2(1)pppprwrwr+==由于+,则+=由此就构成了资产在给定条件下的可行集!投资学第6章6注意到两种资产的相关系数为1≥ρ12≥-1因此,分别在ρ12=1和ρ12=-1时,可以得到资产组合的可行集的顶部边界和底部边界。其他所有的可能情况,在这两个边界之中。投资学第6章7组合的风险-收益二维表示.收益rp风险σp6.2.2两种完全正相关资产的可行集投资学第6章8两种资产完全正相关,即ρ12=1,则有p11112111121p111p221122()(1)()(1)10ppp=+当=时,=,当=时,=,所以,其可行集连接两点(,)和(,)的直线。投资学第6章91111212121112212121221212221212()(1)()/()()(1)(()/())(1()/())ppppppp则-从而--故命题成立,证毕。命题6.1:完全正相关的两种资产构成的可行集是一条直线。证明:由资产组合的计算公式可得投资学第6章10两种资产组合(完全正相关),当权重w1从1减少到0时可以得到一条直线,该直线就构成了两种资产完全正相关的可行集(假定不允许买空卖空)。收益Erp风险σp11(,)r22(,)r投资学第6章116.2.3两种完全负相关资产的可行集两种资产完全负相关,即ρ12=-1,则有2222p11112111211121111221p1221p111121221p1121112()(1)2(1)|(1)|()(1)0()(1)()(1)p=-+当时,当时,=当时,=投资学第6章12命题6.2:完全负相关的两种资产构成的可行集是两条直线,其截距相同,斜率异号。证明:2112111121()(1)()pp当时,则可以得到,从而221212121212221212()(1)ppppprrrrrrrr+++投资学第6章132112112111212221212,()(1)()pppp同理可证当时,则命题成立,证毕。投资学第6章14两种证券完全负相关的图示收益rp风险σp122212rrr22(,)r11(,)r投资学第6章156.2.4两种不完全相关的风险资产的组合的可行集111122222111121112122222111121()(1)()(1)2(1)0()(1)1ppprwwrwr当1时+=尤其当=时=这是一条二次曲线,事实上,当1时,可行集都是二次曲线。投资学第6章16总结:在各种相关系数下、两种风险资产构成的可行集收益Erp风险σpρ=1ρ=0ρ=-111(,)r22(,)r122212rrr投资学第6章171212121212121111由图可见,可行集的弯曲程度取决于相关系数。随着的增大,弯曲程度增加;当=-时,呈现折线状,也就是弯曲度最大;当=时,弯曲度最小,也就是没有弯曲,则为一条直线;当,就介于直线和折线之间,成为平滑的曲线,而且越大越弯曲。投资学第6章183种风险资产的组合二维表示一般地,当资产数量增加时,要保证资产之间两两完全正(负)相关是不可能的,因此,一般假设两种资产之间是不完全相关(一般形态)。收益rp风险σp1234投资学第6章19类似于3种资产构成组合的算法,我们可以得到一个月牙型的区域为n种资产构成的组合的可行集。收益rp风险σpn种风险资产的组合二维表示投资学第6章20总结:可行集的两个性质1.在n种资产中,如果至少存在三项资产彼此不完全相关,则可行集合将是一个二维的实体区域2.可行区域是向左侧凸出的因为任意两项资产构成的投资组合都位于两项资产连线的左侧。为什么?投资学第6章21收益rp风险σp不可能的可行集AB投资学第6章226.2.5风险资产组合的有效集在可行集中,有一部分投资组合从风险水平和收益水平这两个角度来评价,会明显地优于另外一些投资组合,其特点是在同种风险水平的情况下,提供最大预期收益率;在同种收益水平的情况下,提供最小风险。我们把满足这两个条件(均方准则)的资产组合,称之为有效资产组合;由所有有效资产组合构成的集合,称之为有效集或有效边界。投资者的最优资产组合将从有效集中产生,而对所有不在有效集内的其它投资组合则无须考虑。投资学第6章23整个可行集中,G点为最左边的点,具有最小标准差。从G点沿可行集右上方的边界直到整个可行集的最高点S(具有最大期望收益率),这一边界线GS即是有效集。例如:自G点向右上方的边界线GS上的点所对应的投资组合如P,与可行集内其它点所对应的投资组合(如A点)比较起来,在相同风险水平下,可以提供最大的预期收益率;而与B点比较起来,在相同的收益水平下,P点承担的风险又是最小的。投资学第6章24总结A、两种资产的可行集完全正相关是一条直线完全负相关是两条直线完全不相关是一条抛物线其他情况是界于上述情况的曲线B、两种资产的有效集左上方的线C、多个资产的有效边界可行集:月牙型的区域有效集:左上方的线投资学第6章25马克维茨的数学模型*均值-方差(Mean-variance)模型是由哈里·马克维茨等人于1952年建立的,其目的是寻找有效边界。通过期望收益和方差来评价组合,投资者是理性的:害怕风险和收益多多益善。因此,根据上一章的占优原则这可以转化为一个优化问题,即(1)给定收益的条件下,风险最小化(2)给定风险的条件下,收益最大化投资学第6章261111mins.t.,1nnijijijniiinii11111212...=(,,...,)w=(,,...,),nnnnTnncrrrr若已知资产组合收益、方差协方差矩阵和组合各个资产期望收益向量,求解组合中资产权重向量则有投资学第6章27对于上述带有约束条件的优化问题,可以引入拉格朗日乘子λ和μ来解决这一优化问题。构造拉格朗日函数如下1111L()(1)nnnnijijiiiijii上式左右两边对wi求导数,令其一阶条件为0,得到方程组投资学第6章28111122121000njjjnjjjnjnjnjnLwrwLwrwLwrw和方程111niiiniiwrcw投资学第6章29这样共有n+2方程,未知数为wi(i=1,2,…,n)、λ和μ,共有n+2个未知量,其解是存在的。注意到上述的方程是线性方程组,可以通过线性代数加以解决。例:假设三项不相关的资产,其均值分别为1,2,3,方差都为1,若要求三项资产构成的组合期望收益为2,求解最优的权重。投资学第6章303111113222123332133123131231020302321jjjjjjjjjiiiiiLwrwwLwrwwLwr100010001由于1=(1,2,3),2Tcr投资学第6章3112301/31/31/31/3课外练习:假设三项不相关的资产。其均值分别为1,2,3,方差都为1,若要求三项资产构成的组合期望收益为1,求解最优的权重。由此得到组合的方差为213投资学第6章326.2.6最优风险资产组合1.由于假设投资者是风险厌恶的,因此,最优投资组合必定位于有效集边界上,其他非有效的组合可以首先被排除。2.虽然投资者都是风险厌恶的,但程度有所不同,因此,最终从有效边界上挑选那一个资产组合,则取决于投资者的风险规避程度。3.度量投资者风险偏好的无差异曲线与有效边界共同决定了最优的投资组合。投资学第6章33理性投资者对风险偏好程度的描述——无差异曲线同一条无差异曲线,给投资者所提供的效用(即满足程度)是无差异的,无差异曲线向右上方倾斜,高风险被其具有的高收益所弥补。对于每一个投资者,无差异曲线位置越高,该曲线上对应证券组合给投资者提供的满意程度越高。不同理性投资者具有不同风险厌恶程度由无差异曲线族的陡峭程度来反映。无差异曲线越陡峭,投资者越厌恶风险。图a代表的投资者与图b代表的投资者相比,风险水平增加相同幅度,图a代表的投资者要求收益率的补偿要远远高于图b所代表的投资者。因此,图a对应的投资者更加厌恶风险。投资学第6章35最优组合的确定最优资产组合位于无差异曲线I2与有效集相切的切点O处。由G点可见,对于更害怕风险的投资者,他在有效边界上的点具有较低的风险和收益。投资学第6章36资产组合理论的优点首次对风险和收益进行精确的描述,解决对风险的衡量问题,使投资学从一个艺术迈向科学。分散投资的合理性为基金管理提供理论依据。单个资产的风险并不重要,重要的是组合的风险。从单个证券的分析,转向组合的分析投资学第6章37资产组合理论的缺点当证券的数量较多时,计算量非常大,使模型应用受到限制。解的不稳定性。重新配置的高成本。因此,马克维茨及其学生夏普就可是寻求更为简便的方法,这就是CAPM。投资学第6章386.
本文标题:第6章投资理论(2)资产组合理论与资本资产定价模型(投
链接地址:https://www.777doc.com/doc-1212014 .html