您好,欢迎访问三七文档
当前位置:首页 > 幼儿/小学教育 > 小学教育 > 2023年初中数学因式分解教案精编4篇
好文供参考!1/132023年初中数学因式分解教案精编4篇【引读】这篇优秀的文档“2023年初中数学因式分解教案精编4篇”由网友上传分享,供您参考学习使用,希望此文对您有所帮助,喜欢的话就分享给下载吧!初中数学因式分解教案11、会运用因式分解进行简单的多项式除法。2、会运用因式分解解简单的方程。因式分解在多项式除法和解方程两方面的应用。应用因式分解解方程涉及较多的推理过程。1、知识回顾(1)因式分解的几种方法:①提取公因式法:ma+mb=m(a+b)②应用平方差公式:=(a+b)(a—b)③应用完全平方公式:a2ab+b=(ab)(2)课前热身:①分解因式:(x+4)y—16xy1、运用因式分解进行多项式除法例1计算:(1)(2ab—8ab)(4a—b)(2)(4x—9)(3—2x)解:(1)(2ab—8ab)(4a—b)=—2ab(4a—b)(4a—b)=—2ab(2)(4x—9)(3—2x)=(2x+3)(2x—3)[—(2x—3)]=—(2x+3)=—2x—3一个小问题:这里的x能等于3/2吗?为什么?想一想:那么(4x—9)(3—2x)呢?练习:课本p162好文供参考!2/13课内练习想一想:如果已知()()=0,那么这两个括号内应填入怎样的数或代数式子才能够满足条件呢?(让学生自己思考、相互之间讨论!)事实上,若ab=0,则有下面的结论:(1)a和b同时都为零,即a=0,且b=0(2)a和b中有一个为零,即a=0,或b=0试一试:你能运用上面的结论解方程(2x+1)(3x—2)=0吗?3、运用因式分解解简单的方程例2解下列方程:(1)2x+x=0(2)(2x—1)=(x+2)解:x(x+1)=0解:(2x—1)—(x+2)=0则x=0,或2x+1=0(3x+1)(x—3)=0原方程的根是x1=0,x2=则3x+1=0,或x—3=0原方程的根是x1=,x2=3注:只含有一个未知数的方程的解也叫做根,当方程的根多于一个时,常用带足标的字母表示,比如:x1,x2做一做!对于方程:x+2=(x+2),你是如何解该方程的,方程左右两边能同时除以(x+2)吗?为什么?教师总结:运用因式分解解方程的基本步骤(1)如果方程的右边是零,那么把左边分解因式,转化为解若干个一元一次方程;(2)如果方程的两边都不是零,那么应该先移项,把方程的右边化为零以后再进行解方程;遇到方程两边有公因式,同样需要先进行移项使右边化为零,切忌两边同时除以公因式!4、知识延伸解方程:(x+4)—16x=0解:将原方程左边分解因式,得(x+4)—(4x)=0(x+4+4x)(x+4—4x)好文供参考!3/13=0(x+4x+4)(x—4x+4)=0(x+2)(x—2)=0接着继续解方程,5、练一练①已知a、b、c为三角形的三边,试判断a—2ab+b—c大于零?小于零?等于零?解:a—2ab+b—c=(a—b)—c=(a—b+c)(a—b—c)∵a、b、c为三角形的三边a+c﹥ba﹤b+ca—b+c﹥0a—b—c﹤0即:(a—b+c)(a—b—c)﹤0,因此a—2ab+b—c小于零。6、挑战极限①已知:x=20xx,求∣4x—4x+3∣—4∣x+2x+2∣+13x+6的值。解:∵4x—4x+3=(4x—4x+1)+2=(2x—1)+20x+2x+2=(x+2x+1)+1=(x+1)+10∣4x—4x+3∣—4∣x+2x+2∣+13x+6=4x—4x+3—4(x+2x+2)+13x+6=4x—4x+3—4x—8x—8+13x+6=x+1即:原式=x+1=20xx+1=20xx(1)运用因式分解进行多项式除法(2)运用因式分解解简单的方程作业本6、42、课本p163作业题(选做)初中数学因式分解教案2本小节依次介绍了平方差公式和完全平方公式,并结合公式讲授如何运用公式进行多项式的因式分解。第一课时的内容是用平方差公式对多项式进行因式分解,首先提出新问题:x2-4与y2-25怎样进行因式分解,让学生自主探索,通过整式乘法的平方差公式,逆向得出用公式法分解因式的方法,发好文供参考!4/13展学生的逆向思维和推理能力,然后让学生独立去做例题、练习中的题目,并对结果通过展示、解释、相互点评,达到能较好的运用平方差公式进行因式分解的目的。第二课时利用完全平方公式进行多项式的因式分解是在学生已经学习了提取公因式法及利用平方差公式分解因式的基础上进行的,因此在教学设计中,重点放在判断一个多项式是否为完全平方式上,采取启发式的教学方法,引导学生积极思考问题,从中培养学生的思维品质。会用平方差公式对多项式进行因式分解;会用完全平方公式对多项式进行因式分解;能够综合运用提公因式法、平方差公式、完全平方公式对多项式进行因式分解;提高全面地观察问题、分析问题和逆向思维的能力。经历用公式法分解因式的探索过程,进一步体会这两个公式在因式分解和整式乘法中的不同方向,加深对整式乘法和因式分解这两个相反变形的认识,体会从正逆两方面认识和研究事物的方法。通过学习进一步理解数学知识间有着密切的联系。重点:①运用平方差公式分解因式;②运用完全平方式分解因式。难点:①灵活运用平方差公式分解因式,正确判断因式分解的彻底性;②灵活运用完全平方公式分解因式好文供参考!5/13关键:把握住因式分解的基本思路,观察多项式的特征,灵活地运用换元和划归思想。初中数学因式分解教案31、了解因式分解的意义以及它与正式乘法的关系。2、能确定多项式各项的公因式,会用提公因式法分解因式。:能用提公因式法分解因式。:确定因式的公因式。,在确定多项式各项公因式时,应抓住各项的公因式来提公因式。1、计算(1)、n(n+1)(n-1)(2)、(a+1)(a-2)(3)、m(a+b)(4)、2ab(x-2y+1)1、阅读课文p72-73的内容,并回答问题:(1)知识点一:把一个多项式化为几个整式的__________的形式叫做____________,也叫做把这个多项式__________。(2)、知识点二:由m(a+b+c)=ma+mb+mc可得ma+mb+mc=m(a+b+c)我们来分析一下多项式ma+mb+mc的特点;它的每一项都含有一个相同的因式m,m叫做各项的_________。如果把这个_________提到括号外面,这样好文供参考!6/13ma+mb+mc就分解成两个因式的积m(a+b+c),即ma+mb+mc=m(a+b+c)。这种________的方法叫做________。2、练一练。p73练习第1题。1、(1)m(a-b)=ma-mb(2)a(x-y+2)=ax-ay+2a,由上可知,整式乘法是一种变形,左边是几个整式乘积形式,右边是一个多项式。、2、(1)ma-mb=m(a-b)(2)ax-ay+2a=a(x-y+2),由此可知,因式分解也是一种变形,左边是_____________,右边是_____________。3、下列是由左到右的变形,哪些属于整式乘法,哪些属于因式分解?(1)(a+b)(a-b)=a-b(2)a+2ab+b=(a+b)(3)-6x3+18x2-12x=-16(x2-3x+2)(4)(x-1)(x+1)=x2-14、准确地确定公因式时提公因式法分解因式的关键,确定公因式可分两步进行:(1)确定公因式的数字因数,当各项系数都是整数时,他们的最大公约数就是公因式的数字因数。例如:8a2b-72abc公因式的数字因数为8。(2)确定公因式的字母及其指数,公因式的字母应是多项式各项都含有的字母,其指数取最低的。故8a2b-72abc的公因式是8ab1、填空(1)a2b-ab2=ab(________)好文供参考!7/13(2)-4a2b+8ab-4b分解因式为__________________(3)分解因式4x2+12x3+4x=__________________(4)__________________=-2a(a-2b+3c)2、p73练习第2题和第3题1、下列各式从左到右的变形中,哪些是整式乘法?哪些是因式分解?哪些两者都不是?(1)ax+bx+cx+m=x(a+b+c)+m(2)mx-2m=m(x-2)(3)2a(b+c)=2ab+2ac(4)(x-3)(x+3)=(x+3)(x-3)(5)x2-y2-1=(x+y)(x-y)-1(6)(x-2)(x+2)=x2-42.课本p77习题第1题初中数学因式分解教案4因式分解教材分析因式分解是进行代数式恒等变形的重要手段之一,因式分解是在学习整式四则运算的基础上进行的,它不仅仅在多项式的除法、简便运算中等有直接的应用,也为以后学习分式的约分与通分、解方程(组)及三解函数式的恒等变形带给了必要的基础,因此学好因式分解对于代数知识的后续学习,具有相当重要的好处。由于本节课后学习提取公因式法,运用公式法,分组分解法来进行因式分解,务必以理解因式分解的概念为前提,所以本节资料的重点是因式分解的概念。由整式乘法寻求好文供参考!8/13因式分解的方法是一种逆向思维过程,而逆向思维对初一学生还比较生疏,理解起来有必须难度,再者本节还没涉及因式分解的具体方法,所以理解因式分解与整式乘法的相互关系,并运用它们之间的相互关系寻求因式分解的方法是教学中的难点。认知目标:(1)理解因式分解的概念和好处(2)认识因式分解与整式乘法的相互关系——相反变形,并会运用它们之间的相互关系寻求因式分解的方法。潜力目标:由学生自行探求解题途径,培养学生观察、分析、决定潜力和创新潜力,发展学生智能,深化学生逆向思维潜力和综合运用潜力。情感目标:培养学生理解矛盾的对立统一观点,独立思考,勇于探索的精神和实事求是的科学态度。1.目标具体化、明确化,从学生实际出发,具有针对性和可行性,同时便于上课操作,便于检测和及时反馈。2.课堂教学体现潜力立意。3.寓德育教育于教学之中。1.采用以设疑探究的引课方式,激发学生的求知欲望,提高学生的学习兴趣和学习用心性。2.把因式分解概念及其与整式乘法的关系作为主线,训练学生思维,以设疑——感知——概括——运用为教学程序,充分遵循学生的认知规律,使学生能顺利地掌握重点,突破难好文供参考!9/13点,提高潜力。3.在课堂教学中,引导学生体会知识的发生发展过程,坚持启发式,鼓励学生充分地动脑、动口、动手,用心参与到教学中来,充分体现了学生的主动性原则。4.在充分尊重教材的前提下,融教材练习、想一想于教学过程中,增设了由浅入深、各不相同却又紧密相关的训练题目,为学生顺利掌握因式分解概念及其与整式乘法关系创造了有利条件。5.改变传统言传身教的方式,利用计算机辅助教学手段进行教学,增大教学的容量和直观性,提高教学效率和教学质量。问题:看谁算得快?(计算机出示问题)(1)若a=101,b=99,则a2—b2=(a+b)(a—b)=(101+99)(101—99)=400(2)若a=99,b=—1,则a2—2ab+b2=(a—b)2=(99+1)2=10000(3)若x=—3,则20x2+60x=20x(x+3)=20x(—3)(—3+3)=0(1)请每题想得最快的同学谈思路,得出最佳解题方法(同时计算机出示答案)(2)观察:a2—b2=(a+b)(a—b)①的左边是一个什么式子?右边又是什么形式?好文供参考!10/13a2—2ab+b2=(a—b)2②20x2+60x=20x(x+3)③(3)类比小学学过的因数分解概念,(例42=2×3×7④)得出因式分解概念。板书课题:§7。1因式分解1.因式分解概念:把一个多项式化成几个整式的积的形式叫做因式分解,也叫分解因式。练习1.下列由左边到右边的变形,哪些是因式分解?哪些不是?为什么?(计算机演示)①(x+2)(x—2)=x2—4②x2—4=(x+2)(x—2)③a2—2ab+b2=(a—b)2④3a(a+2)=3a2+6a⑤3a2+6a=3a(a+2)⑥x2—4+3x=(x—2)(x+2)+3x⑦k2++2=(k+)2⑧x—2—1=(x—1+1)(x—1—1)⑨18a3bc=3a2b·6ac2.因式分解与整
本文标题:2023年初中数学因式分解教案精编4篇
链接地址:https://www.777doc.com/doc-12161949 .html