您好,欢迎访问三七文档
当前位置:首页 > 幼儿/小学教育 > 小学教育 > 鸡兔同笼教案精编5篇
好文供参考!1/25鸡兔同笼教案精编5篇【引读】这篇优秀的文档“鸡兔同笼教案精编5篇”由网友上传分享,供您参考学习使用,希望此文对您有所帮助,喜欢的话就分享给下载吧!小学数学《鸡兔同笼》教案1教学内容:数学北师大版五年级上册第五单元尝试与猜测第一课时《鸡兔同笼》教材80~81页教学目标:1、了解鸡兔同笼问题,掌握用尝试法、假设法解决问题,初步形成解决此类问题的一般性策略。2、通过自主探究、合作交流,让学生经历用不同的列表方法解决“鸡兔同笼”问题的过程,明确数量关系。教学重点:明确鸡兔同笼问题数量关系。教学难点:初步形成解决此类问题的一般性。教学过程一、历史激趣,导入新课1、导语:老师知道我们班的同学非常喜欢读书,今天老好文供参考!2/25师给同学们带来一部1500年前的数学名著《孙子算经》(课件出示古书动画打开书出现原题),里面记载着许多有趣的数学名题,其中有这样一道题请看:今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?(师读,课件中标注出题目中的“雉”:(读成“zhì”)野鸡;几何:多少。)师:谁知道,这道题目是什么意思?师:是呀,这道题目是说,现在有一些野鸡和兔子,关在同一只笼子里,从上面看,共有35个头;从下面看,共有94只脚。问有多少只野鸡、多少只兔子。师:古代人对这样的题目有着自己独到的见解,我们把类似于这样的问题,统统称为:“鸡兔同笼”。今天,我们就来研究中国历史上著名的数学趣题“鸡兔同笼问题”。板书课题。(板书:鸡兔同笼)2、我们先从简单一些的问题入手,来探讨解决这类问题的方法,好吗?大家请看屏幕。出示题目:(鸡兔同笼问题,课件出示鸡兔同笼情境图)二、主动探究、合作交流、学习新知:1.师:请大家自由读题,你们都知道了什么信息?生:鸡和兔一共有20个头。鸡兔一共有54条腿。求分别有几只?师:还有补充吗?有两个隐藏条件看谁细心发现了?。生:鸡有2条腿,兔子有4条腿。鸡和兔一共有20个头。好文供参考!3/25鸡兔一共有54条腿。求分别有几只?师评:他还发现了隐藏条件,审题真细心。2.先猜一猜,鸡兔可能有几只?可能只有一种动物吗,为什么?学生猜测,汇报。不可能都是鸡,因为如果都是鸡就会有40条腿,而题目中是54条腿。也不可能都是兔,因为如果都是兔就会有80条腿。3.独立思考:(1)你想怎样解决这个问题?生举手,师:不着急说,先自己想一想!学生静想10秒。(2)师:你们愿意自己独立解决这个问题,还是我教给你们方法你们做?好,那就请你们小组合作交流,在小组长的带领下,用自己喜欢的方法来解决这个问题。比一比,看看那个组想出的办法多,方法巧。学生合作,教师巡视指导。4、汇报:(汇报时,师生、生生质疑,评价)A、师:谁愿意展示你的方法?(1)列表法:①逐一列表法小组1:我们采用列表法得出的答案。(实物投影展示小组的成果)师:学生说出“1只鸡,19只兔子”,问“怎样计算出的腿数?”1×2+19×4=2+76=78问“结果就是13只鸡,7只兔子吗?怎样可以知道这个结果是正确的?”是的,可以用算好文供参考!4/25式来验证:13×2+7×4=26+28=54(条)师:谁和他的方法一样?能再讲讲吗?师:追问“有些同学在填表时写出的腿数特别快,让我们采访一下有什么秘诀?”(因为鸡和兔的只数是固定的,每增加一只兔子减少一只鸡,腿的总只数就增加2。反之依然,所以列表列得特别快。)师:评价“像你们这样,采用列表的方法,不重复、不遗漏的写出所有可能的答案。这种逐一列举的方法在数学中也称为“枚举法”(板书)小结:逐一列表法虽然比较麻烦,但是不重复不遗漏;师:除了像他们这样逐一列举,还有不同的列表方法吗?②跳跃列表请小幅度跳跃列表的同学汇报;(汇报,说出是如何确定第一组数据的?计算验证后发现了什么问题?如何调整的谁还有不同的调整策略?)问:你们觉得这种方法怎么样?(简便、快捷)请大幅度跳跃列表同学汇报(你是怎样想到把鸡或兔的只数从只一下调整到只的)请大或小幅度调整与逐一相结合的汇报(重点追问:你每一步是怎样进行调整的?根据什么进行调整的?)小结:列表过程中根据需要我们可以有规律的小幅度跳跃,也可以根据自己的发现大幅度的跳跃;(板书跳跃)③取中列好文供参考!5/25表法请选用取中列举法的同学汇报?追问:你是怎样想到这种列表法的(说出理由)还有那些同学与他的方法相同或类似,你们认为这种方法有什么优势?小结:取中列举法在逐一和跳跃的基础上直取中间数,验证后调整幅度缩小更为简便快捷(板书取中)(2)、回顾一下我们的解题思路和方法,首先根据已知信息进行尝试猜测,然后进行计算验证,分析后进行合理调整。(相机板书:猜测、验证、调整)(3)你最喜欢那种列表方法?理由呢?(4)、同学们还有其他的方法解决这道题吗?直观画图法:大家明白了吗?你觉得这种解法怎么样?小结:画图的方法非常直观便于观察、非常容易理解。(5)、同学们还有具有独特个性的解法吗?可以用自己的名字命名汇报。过渡:你们在这么短的时间内就想出了这么多解决鸡兔同笼问题的方法,你们很了不起。三、方法应用,巩固新知师:同学们,能用你喜欢的列表方法来解决一些问题吗?1、鸡兔同笼,有17个头,42条腿,鸡、兔各多少只?抓住数学的本质,这里的鸡不仅仅代表鸡,这里的兔也不仅仅代好文供参考!6/25表兔,运用我们所学的方法来解决一些生活中的鸡兔同笼问题,2、在我们的生活中所遇到的一些问题,与鸡兔同笼问题有什么联系呢?小明的储蓄罐里有1角和5角的硬币共27枚,价值元,1角和5角的硬币各有多少枚?3、运输中的鸡兔同笼问题用大小卡车往城市运29吨蔬菜,大卡车每辆每次运5吨,小卡车每辆每次运3吨,大小卡车各用几辆能一次运完?尝试运用你喜欢的方法独立完成此题学生汇报:你采用的是那种列表方法为什么要选用这种列表方法?谁有不同的列表方法?1)、(如分别出现两种不同的正确答案)两种答案都正确吗?那么用什么方法能使所有的正确答案都不遗漏呢?师生集体尝试逐一列表的方法。就这道题而言,你认为它与鸡兔同笼问题有什么联系?不同之处呢?(没有限定大小卡车的总辆数)哪种方法解决最好?或2)、(如出现一名同学有两个正确答案和分别一个正确答案)你认为谁的方法更好?过渡语:老师相信同学们一定会耐心细致的做每一件事请。四、总结全课交流收获生活中随处可见鸡兔同笼问题,愿意告诉老师这节课你的学习收获吗结束语:数学自古以来是中国历史上的璀璨明珠,好文供参考!7/25在我们的生活中更是无处不在,我相信同学们只要敢于猜测尝试、并且不断的实践验证、调整创新,任何问题都能迎刃而解。五、板书设计:鸡兔同笼列表法思路逐一猜测跳跃验证取中调整《鸡兔同笼》教案2教材分析:“鸡兔同笼”问题是我国民间广为流传的数学趣题,最早出现在《孙子算经》中。教材在四年级下册数学广角中安排“鸡兔同笼”的教学内容,其教学方法与常规课不同。数学广角重在向学生渗透一些数学思想方法,并初步培养学生有顺序地、全面地思考问题的意识。因此,在教学此内容时,一方面可以培养学生的逻辑推理能力;另一方面使学生体会代数方法的一般性。学情分析:“鸡兔同笼”问题对于四年级的学生来说是难于理解,四年级的学生已经虽然具备了应用逐一尝试法、列表法解决问题的基本能力。他们已初步接触多种解题策略,会一些基本的解好文供参考!8/25决数学问题的方法。学生已初步具备一定的归纳、猜想能力,但是在数学的应用意识与应用能力方面需要进一步培养。教学目标:1、使学生了解“鸡兔同笼”问题,感受古代数学问题的趣味性。2、能尝试用不同的方法解决“鸡兔同笼”问题,使学生体会假设方法的一般性。教学重点:会用画图法、列表法和假设法解答“鸡兔同笼”问题。教学难点:用合理的方法解答生活中的“鸡兔同笼”问题。教具准备:多媒体课件、表格等。教学过程:一、创设情境、揭示课题。1.播放《奔跑吧,兄弟》主题曲,同学们,你们知道这是什么节目的主题曲吗?2.播放视频,介绍:2015年4月24日这期的《奔跑吧,兄弟》中,各位跑男被带到有密码的房间里,陈赫遇到了这样一道题。这道题被收在《孙子算经》中,《孙子算经》是我国古代一部非常重要的数学名著,今天,我们就来研究中国历史上好文供参考!9/25著名的数学趣题“鸡兔同笼问题”。(板书课题)2、我们先从简单一些的问题入手,来探讨解决这类问题的方法,好吗?大家请看。出示题目:鸡兔同笼一共有8个头,一共有26条腿。鸡和兔各有几只?二、合作探究、学习新知:活动一:探究用猜测列表法解决“鸡兔同笼”问题。学习方式:自学教材,小组合作交流1.师:请大家自由读题,你们都知道了什么信息?生:鸡和兔一共有8个头。鸡兔一共有26条腿。求分别有几只?师:还有补充吗?有两个隐藏条件看谁细心发现了?。生:鸡有2条腿,兔子有4条腿。鸡和兔一共有8个头。鸡兔一共有26条腿。求分别有几只?师评:他还发现了隐藏条件,审题真细心。2.先猜一猜,鸡兔可能有几只?可能只有一种动物吗,为什么?学生猜测,汇报。不可能都是鸡,因为如果都是鸡就会有16条腿,而题目中是26条腿。也不可能都是兔,因为如果都是兔就会有32条腿。(1)师:我们采用列表法得出的答案,好吗?翻开书104页,按照顺序列表试一试。好文供参考!10/25(2)说一说你是怎么想的?从尝试举例过程中,你发现了什么规律?和小组的同学说一说。(汇报交流)小结讲解:鸡兔的总只数不变,多一只兔子就会少一只鸡,并会增加两只脚;多一只鸡就会少一只兔子,并会少两只脚。活动二:探究用假设法解决“鸡兔同笼”问题。学习方式:自学教材,小组合作交流。小组1:假设全都是鸡:2×8=16(条)26-16=10(条)10÷2=5(只)??兔子8-5=3(只)??鸡谁有不懂得问题要问他?你们看看是不是这样:看演示板书“假设法。”师:除了可以假设都是鸡,还可以怎样假设呢?小组2:引导学生说出都是兔,并演示。师:实际上,你们刚才的这些方法都运用了一种数学思想。你们知道是什么思想么?师:真好,你们发现了数学中一种重要的数学思想,就是假设思想。如果我们学会了用假设的数学思想啊,那我们能解决生活中的很多很多问题,是不是啊。小结:同学们,刚才我们用很多方法解决了同一个问题,你觉得这些方法的核心思想是什么?(假设。所以鸡兔同笼问题又叫假设问题。)3、发散思考、加深理解。下面我们来帮陈赫找到他房间的密码,解放他吧!好文供参考!11/25出示:鸡兔同笼,有35个头,94条腿,鸡兔各有几只?师:我们发现课本上的假设法理解起来比较抽象,现在大家换一种假设法来思考。你们看,这样行不行?生:是什么样的假设法,让我们先睹为快!师:是这样的,如果让每只兔子都立起两条腿,这时,鸡和兔的脚数是相等的,接下来会出现什么样的情况呢?生:每个头有两条腿,35个头是70条腿。(94-70)少了24条腿,正好可以求出兔子的只数,24除以2等于12。生:鸡的只数为:35-12=23(只)。师:还有别的做法吗?怎样解答?生:把每只鸡的翅膀看成是两条腿。这样每只头对应的是4条腿。共有140条腿,多出46条腿,多出的是23只鸡的腿,那么,兔的只数鸡兔同笼教案3一、教学目标知识与技能理解掌握并会运用列表法、假设法解决“鸡兔同笼”问题。过程与方法经历自主探索解决问题的过程,体验解决问题的策略的多样化;在解决问题的过程中,提高逻辑推理能力,增强应用意识和实践能力。好文供参考!12/25情感态度价值观感受古代数学问题的趣味性。二、教学重难点教学重点掌握运用列表法、假设法解决“鸡兔同笼”问题。教学难点理解掌握假设法,能运用假设法解决数学问题。三、教学过程(一)引入新课PPT呈现课本的主题图,并提问:今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?是什么意思?大家能不能算出各几何呢?引出课题——《鸡兔同笼》(二)探索新知先从简单问题出发,呈现例1:8个头,26只脚,鸡和兔子各几只?猜测一下教师总结学生回答:3只兔子,5只鸡,22只脚;4只兔子,4只鸡,24只脚。均不对追问:按顺序列表填写一下,应该是各有几只?得出结论有3只鸡,5只兔子。进一步追问:还有没有其他方法?学生活动:前后
本文标题:鸡兔同笼教案精编5篇
链接地址:https://www.777doc.com/doc-12279984 .html