您好,欢迎访问三七文档
当前位置:首页 > 幼儿/小学教育 > 小学教育 > 数学一次函数教案【汇编4篇】
数学一次函数教案【汇编4篇】每个老师为了上好课需要写教案课件,但教案课件不是随便写写就可以的。教师需要根据学生对教学内容的反应调整教案。跟三一刀客一起来了解关于“数学一次函数教案【汇编4篇】”的内容吧,我们希望能为您提供更多的参考!数学一次函数教案篇【第一篇】一次函数教学过程设计1.准备工作在教学开始前,教师应该对本课的教学内容进行详细的研究和准备,制定出科学合理的教学计划和教学步骤,以充分发挥教学效果。2.导入新知识首先,教师应该利用学生先前学习的知识和现实生活中的例子,从简单到复杂地引导他们理解什么是一次函数,以及一次函数的特点和性质。例如,可以利用柿子树生长的例子来引导学生理解一次函数,利用图表和数学式子帮助学生理解一次函数y=kx+b的含义。3.理论讲授接下来,教师应该详细讲解一次函数的定义、特点、性质和相关概念,为学生打下牢固的理论基础。教师可以使用多媒体课件、幻灯片、黑板等教具,给学生呈现多种多样的学习资源。4.课堂练习在理论讲解之后,教师可以通过课堂练习来帮助学生熟悉一次函数的相关概念和运用方法。课堂练习的形式可以是个人练习、小组练习或者全班练习。5.拓展延伸在课堂练习结束后,教师可以通过一些实际应用情境,以及更复杂的一次函数的应用案例来拓展学生的思维和知识,帮助他们更加深入地理解一次函数的概念和运用。6.总结反思随着本课程的结束,教师应该适时地对本节课的教学内容进行总结。教师可以邀请学生分享他们在本课程中的学习心得和经验,或者给出一些总结性的问题来帮助学生更好地理解本课程内容。7.作业布置最后,教师应该适时地布置与本课程相关的作业,以巩固学生对一次函数的掌握和运用能力。可以有多种形式的作业,例如奥数训练、实际连续性训练和动手设计等方式。一次函数授课思路1.引入,以引导学生认识一次函数的基本概念。利用学生已有的知识,以买柿子、车行路程等例子引导学生认识一次函数的基本概念,包括什么是一次函数,一次函数的定义,一次函数的图像等。2.讲解一次函数的解析式以及相应的性质。讲解一次函数y=kx+b的含义和推导方式,重点讲解斜率k及截距b的意义及公式。3.制作一次函数教学素材,让学生调整解析式的参数。通过制作一份一次函数教学素材,让学生自行调整函数的解析式中的参数,来理解不同参数对于函数图像的影响以及斜率和截距的作用。4.针对常见问题进行讲解。对于学生在学习过程中常见的问题,例如“斜率k是什么?截距b又是什么?”,教师应当对其进行详细讲解,以确保学生对相关概念的掌握。5.轻松愉快,采用趣味互动的方式,确保学生掌握一次函数的图像和解析式作用。采用小游戏形式或展示各种不同图像的形式来稳固巩固学生对一次函数的图像和解析式的掌握,确保他们从进一步了解一次函数的角度准确掌握相关知识。6.知识的拓展,扩展应用场景。通过实际情境和特殊问题等方式,大力拓展一次函数的应用场景。例如,可以通过测量树木高度、车行荷载、股票测算等例子,开发学生学习乐趣,引导他们思考一次函数的实际应用。7.总结,并进行知识的自我总结。针对一次函数的相关概念和知识点,对学生进行清晰的概括,以加深他们的理解和记忆。同时,鼓励学生自己互相交流并将所掌握的知识向他人展示,以提高整个班级的学习水平。8.推荐学生复习和强化训练,巩固所学知识。鼓励学生在学习完相关知识后进行复习和强化训练,在这一过程中充分巩固所学知识,并全面提高自身做题和解决实际问题的能力。数学一次函数教案篇【第二篇】数学一次函数教案一、教学目标:1.理解一次函数的基本概念,能够分辨一次函数的图象。2.掌握一次函数的性质,能够准确地表示一次函数的解析式。3.学会利用一次函数模型解决实际问题。4.培养学生的数学思维和创新意识,提高学生的数学素养。二、教学重点:1.了解一次函数的基本概念和性质。2.掌握一次函数的图象和解析式的表示方法。三、教学难点:1.掌握一次函数图象和解析式之间的转化方法。2.学会将实际问题转化为一次函数模型进行求解。四、教学过程:1.热身导入(5分钟)教师出示一道与一次函数相关的实际问题:小明在一家商场买了一件T恤衫,原价120元,现在打8折出售,问小明应付多少钱。鼓励学生思考,快速解答。2.概念讲解(15分钟)教师以板书形式呈现一次函数的定义:如果一个函数的解析式为y=ax+b(其中a和b是常数,并且a≠0),那么它就是一次函数。然后,教师对一次函数的基本概念进行讲解,包括自变量、因变量、解析式和函数图象等。3.性质探究(20分钟)教师通过问题引导学生自主发现一次函数的性质。例如:一次函数的图象必定是一条直线,当自变量为0时,函数值为常数b,当自变量每增加1时,函数值增加a。4.图象绘制(20分钟)教师给出一些一次函数的解析式,如y=2x+1,y=-3x+4,引导学生绘制对应的函数图象,并让学生探讨函数图象与函数解析式的联系和特点。5.实际问题解决(20分钟)教师提供一些与生活实际问题相关的一次函数模型,如某电影院票价与购票人数的关系,某商场日销售额与顾客数量的关系等,鼓励学生运用一次函数模型解决这些实际问题。6.拓展应用(10分钟)教师出示一些挑战性的扩展问题,例如:如何通过两点确定一次函数的解析式?如何通过一次函数图象推断函数的解析式?需要学生灵活运用一次函数的概念和性质,进行推理和解决问题。7.小结归纳(5分钟)教师对本节课的重点内容进行归纳总结,回顾本节课所学的一次函数的基本概念和性质,以及如何利用一次函数模型解决实际问题。五、课后作业:1.完成课堂练习册上与一次函数相关的习题。2.思考并总结自己在学习一次函数过程中的收获和困惑。六、教学反思:本节课通过引导学生自主思考,培养了学生的数学思维和探究能力。通过实际问题的引入,培养了学生将数学知识应用到实际问题解决的能力。但是在实际问题解决环节,有些学生仍存在困惑,需要更多的实践和指导。下节课将加强实践环节的引导和讲解,帮助学生更好地掌握一次函数的应用。数学一次函数教案篇【第三篇】一、教学目标:1.经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系.2.理解抛物线交x轴的点的个数与一元二次方程的根的个数之间的关系,理解何时方程有两个不等的实根、两个相等的实数和没有实根.3.能够利用二次函数的图象求一元二次方程的近似根。二、教学重点利用二次函数的图象求一元二次方程的近似根。教学难点:理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系。三、教学方法:启发引导合作交流四:教具、学具:课件五、教学媒体:计算机、实物投影。六、教学过程:[活动1]检查预习引出课题预习作业:1.解方程:1x2+x-2=0;(2)x2-6x+9=0;(3)x2-x+1=0;(4)x2-2x-2=0.2.回顾一次函数与一元一次方程的关系,利用函数的图象求方程3x-4=0的解.师生行为:教师展示预习作业的内容,指名回答,师生共同回顾旧知,教师做出适当总结和评价。教师重点关注:学生回答问题结论准确性,能否把前后知识联系起来,2题的格式要规范。设计意图:这两道预习题目是对旧知识的回顾,为本课的教学起到铺垫的作用,1题中的三个方程是课本中观察栏目中的三个函数式的变式,这三个方程把二次方程的根的三种情况体现出来,让学生回顾二次方程的相关知识;2题是一次函数与一元一次方程的关系的问题,这题的设计是让学生用学过的熟悉的知识类比探究本课新知识。[活动2]创设情境探究新知问题1.课本p16问题.2.结合图形指出,为什么有两个时间球的高度是15m或0m?为什么只在一个时间球的高度是20m?(结合预习题1,完成课本p16观察中的题目。)师生行为:教师提出问题1,给学生独立思考的时间,教师可适当引导,对学生的解题思路和格式进行梳理和规范;问题2学生独立思考指名回答,注重数形结合思想的渗透;问题3是由学生分组探究的,这个问题的探究稍有难度,活动中教师要深入到各个小组中进行点拨,引导学生总结归纳出正确结论。二次函数y=ax2+bx+c的图象和x轴交点的坐标与一元二次方程ax2+bx+c=0的根有什么关系?二次函数y=ax2+bx+c的图象和x轴交点两个交点一个交点没有交点教师重点关注:1.学生能否把实际问题准确地转化为数学问题;2.学生在思考问题时能否注重数形结合思想的应用;3.学生在探究问题的过程中,能否经历独立思考、认真倾听、获得信息、梳理归纳的过程,使解决问题的方法更准确。设计意图:由现实中的实际问题入手给学生创设熟悉的问题情境,促使学生能积极地参与到数学活动中去,体会二次函数与实际问题的关系;学生通过小组合作分析、交流,探求二次函数与一元二次方程的关系,培养学生的合作精神,积累学习经验。[活动3]例题学习巩固提高问题:例利用函数图象求方程x2-2x-2=0的实数根(精确到).师生行为:教师提出问题,引导学生根据预习题2独立完成,师生互相订正。教师关注:1学生在解题过程中格式是否规范;2学生所画图象是否准确,估算方法是否得当。设计意图:通过预习题2的铺垫,同学们已经从旧知识中寻找到新知识的生长点,很容易明确例题的解题思路和方法,这样既降低难点且突出重点。[活动4]练习反馈巩固新知一元二次方程一元二次方程ax2+bx+c=0ax2+bx+c=0的根两个相异的实数根两个相等的实数根没有实数根根的判别式δ=b2-4acb2-4ac0b2-4ac=0b2-4ac问题:1p97.习题1、21。师生行为:教师提出问题,学生独立思考后写出答案,师生共同评价;问题2学生独立思考后同桌交流,实物投影出学生解题过程,教师强调正确解题思路。教师关注:学生能否准确应用本节课的知识解决问题;学生解题时候暴露的共性问题作针对性的点评,积累解题经验。设计意图:这两个题目就是对本节课知识的巩固应用,让新知识内化升华,培养数学思维的严谨性。[活动5]自主小结,深化提高:1.通过这节课的学习,你获得了哪些数学知识和方法?2.这节课你参与了哪些数学活动?谈谈你获得知识的方法和经验。师生活动:学生思考后回答,教师对学生的错误予以纠正,不足的予以补充,精彩的适当表扬。设计意图:1.题促使学生反思在知识和技能方面的收获;2.题让学生反思自己的学习活动、认知过程,总结解决问题的策略,积累学习知识的方法,力求不同的学生有不同的发展。[活动6]分层作业,发展个性:1.(必做题)阅读教材并完成p97习题21。2:3、4.2.(备选题)p97习题21。2:5、6设计意图:分层作业,使不同层次的学生都能有所收获。七、教学反思:1.注重知识的发生过程与思想方法的应用《用函数的观点看一元二次方程》内容比较多,而课时安排只一节,为了在一节课的时间里更有效地突出重点,突破难点,按照学生的认知规律遵循教师为主导、学生为主体的指导思想,本节课给学生布置的预习作业,从学生已有的经验出发引发学生观察、分析、类比、联想、归纳、总结获得新的知识,让学生充分感受知识的产生和发展过程,使学生始终处于积极的思维状态中,对新的知识的获得觉得不意外,让学生“跳一跳就可以摘到桃子”。探究抛物线交x轴的点的个数与一元二次方程的根的个数之间的关系及其应用的过程中,引导学生观察图形,从图象与x轴交点的个数与方程的根之间进行分析、猜想、归纳、总结,这是重要的数学中数形结合的思想方法,在整个教学过程中始终贯穿的是类比思想方法。这些方法的使用对学生良好思维品质的形成有重要的作用,对学生的终身发展也有一定的作用。2.关注学生学习的过程在教学过程中,教师作为引导者,为学生创设问题情境、提供问题串、给学生提供广阔的思考空间、活动空间、为学生搭建自主学习的平台;学生则在老师的指导下经历操作、实践、思考、交流、合作的过程,其知识的形成和能力的培养相伴而行,创造“海阔凭鱼跃,天高任鸟飞”的课堂境界。3.强化行为反思“反思是数学的重要活动,是数学活动的核心和动力”,本节课在教学过程中始终融入反思的环节,用问题的设计,课堂小结,课后的数学日记等方式引发学生反思,使学生在掌握知识的同时,领悟解决问题的策略,积累学习方法。说到数学日记,“数学日记”就是学生以日记的
本文标题:数学一次函数教案【汇编4篇】
链接地址:https://www.777doc.com/doc-12308518 .html