您好,欢迎访问三七文档
当前位置:首页 > 幼儿/小学教育 > 小学教育 > 数学教案多边形内角和与外角和【汇编4篇】
好文供参考!1/15数学教案多边形内角和与外角和【汇编4篇】【引读】这篇优秀的文档“数学教案多边形内角和与外角和【汇编4篇】”由网友上传分享,供您参考学习使用,希望此文对您有所帮助,喜欢的话就分享给下载吧!多边形的内角和与外角和教案初中数学多边形内角和教案【第一篇】1.掌握多边形的内角和的计算方法,并能用内角和知识解决一些简单的问题。2.经历探索多边形内角和计算公式的过程,体会如何探索研究问题。3.通过将多边形分割为三角形的过程体验,初步认识转化的数学思想。1.重点:多边形的内角和公式2.难点:多边形内角和的推导3.关键:.多边形分割为三角形。三角板、卡纸1、在一次数学基础知识抢答赛中,老师出了这么一个问题,一个五边形的所有角相加等于多少度?一个学生马上能回答,你们能吗?2、教具演示:将一个五边形沿对角线剪开,能分割成几好文供参考!2/15个三角形?你能说出五边形的内角和是多少度吗?(点题)意图:利用抢答问题和教具演示,调动学生的学习兴趣和注意力1、回顾旧知,引出问题:(1)三角形的内角和等于_________.外角和等于____________(2)长方形的内角和等于_____,正方形的内角和等于__________.2、探索四边形的内角和:(1)学生思考,同学讨论交流。(2)学生叙述对四边形内角和的认识(第一二组通过测量相加,第三四组通过画对角线分成两个三角形。)回顾三角形,正方形,长方形内角和,使学生对新问题进行思考与猜想。以四边形的内角和作为探索多边形的突破口。(3)引导学生用分割法探索四边形的内角和:方法一:连接一条对角线,分成2个三角形:180°+180°=360°从简单的思维方式发散学生的想象力达到分割问题,并让学生发现问题,解决问题教学步骤教学内容备注方法二:在四边形内部任取一点,与顶点连接组成4个三角形。180°×4-360°=360°3、探索多边形内角和的问题,提出阶梯式的问题:好文供参考!3/15你能尝试用上面的方法一求出五边形的内角和吗?(第一二组)你能尝试用上面的方法一求出六边形的内角和吗?(第三,四组)那么n边形呢?完成后填表:n边形3456...n分成三角形的个数1234...n-2内角和。4、及时运用,掌握新知:(1)一个八边形的内角和是_____________度(2)一个多边形的内角和是720度,这个多边形是_____边形(3)一个正五边形的每一个内角是________,那么正六边形的每个内角是_________通过学生动手去用分割法求五(六)边形的内角和,从简单到复杂,从而归纳出n边形的内角和运用新知例题:想一想:如果一个四边形的一组对角互补,那么另一组对角有什么关系呢?4、第83页练习1和2多边形内角和定理的应用课堂小结提问方式:本节课我们学习了什么?1多边形内角和公式2多边形内角和计算是通过转化为三角形1、书面作业:2、课外练习:好文供参考!4/15多边形的内角和教案【第二篇】教学目标知识与技能:经历探索多边形的外角和公式的过程;会应用公式解决问题;过程与方法:培养学生把未知转化为已知进行探究的能力,在探究活动中,进一步发展学生的说理能力与简单的推理能力。情感态度与价值观:让学生体验猜想得到证实的成功喜悦和成就感,在解题中感受生活中数学的存在,体验数学充满着探索和创造。教学重点:多边形外角和定理的探索和应用。教学难点:灵活运用公式解决简单的实际问题;转化的数学思维方法的渗透。教学准备:多媒体课件教学过程第一环节创设情境,引入新课(5分钟,学生理解情境,思考问题)问题:(多媒体演示)清晨,小明沿一个五边形广场周围的小路,按逆时针方向跑步。(1)小明每从一条街道转到下一条街道时,身体转过的角是哪个角?(2)他每跑完一圈,身体转过的角度之和是多少?(3)在上图中,你能求出∠1+∠2+∠3+∠4+∠5的结果吗?好文供参考!5/15你是怎样得到的?第二环节问题解决(10分钟,小组讨论,合作探究)对于上述的问题,如果学生能给出一些合理的解释和解答(例如利用内角和),可以按照学生的思路走下去。然后再给出“小亮的做法”或以“小亮做法”为提示,鼓励学生思考。如果学生对于这个问题无法突破,教师可以给出“小亮的做法”,或引导学生按“小亮的做法”这样的思路去思考,以便解决这个问题。小亮是这样思考的:如图所示,过平面内一点O分别作与五边形ABCDE各边平行的射线OA′,OB′,OC′,OD′,OE′,得到∠α,∠β,∠γ,∠δ,∠θ,其中,∠α=∠1,∠β=∠2,∠γ=∠3,∠δ=∠4,∠θ=∠5.这样,∠1+∠2+∠3+∠4+∠5=360°问题引申:1.如果广场的形状是六边形那么还有类似的结论吗?2.如果广场的形状是八边形呢?第三环节探索多边形的外角与外角和(10分钟,全班交流,学生理解识记)1.多边形内角的`一边与另一边的反向延长线所组成的角叫做这个多边形的外角。2.在每个顶点处取这个多边形的一个外角,它们的和叫做这个多边形的外角和。好文供参考!6/15探究多边形的外角和,提出一般性的问题:一个任意的凸n边形,它的外角和是多少?鼓励学生用多种方法解决这个问题,可以参考第二环节解决特殊问题的方法去解决这个一般性的问题。方法Ⅰ:类似探究多边形的内角和的方法,由三角形、四边形、五边形…的外角和开始探究;方法Ⅱ:由n边形的内角和等于(n-2)180°出发,探究问题。结论:多边形的外角和等于360°(1)还有什么方法可以推导出多边形外角和公式?(2)利用多边形外角和的结论,能否推导出多边形内角和的结论?第四环节巩固练习(10分钟,学生利用知识独立解决问题)例1一个多边形的内角和等于它的外角和的3倍,它是几边形?随堂练习1.一个多边形的外角都等于60°,这个多边形是几边形?2.右图是三个不完全相同的正多边形拼成的无缝隙、不重叠的图形的一部分,这种多边形是几边形?为什么?挑战自我:1.在四边形的四个内角中,最多能有几个钝角?最多能有好文供参考!7/15几个锐角?2.在n边形的n个内角中,最多能有几个钝角?最多能有几个锐角?挑战自我的2个问题,对于新授课上的学生而言,难度是比较大的。因为之前不管是多边形的内角和还是外角和,基本上都是利用等式,从“正向”解决的。而这里要解决的问题,在解决的过程中,需要用到简单的不等式知识和“反证”的思想,对于初次接触这些的学生而言,难度是比较大的。教师要注意讲解的方式方法。第五环节课时小结(3分钟,学生加深记忆)多边形的外角及外角和的定义;多边形的外角和等于360°;在探求过程中我们使用了观察、归纳的数学方法,并且运用了类比、转化等数学思想。第六环节布置作业:习题A组(优等生)第1,2,3题B组(中等生)1、2C组(后三分之一生)1多边形的内角和教案【第三篇】一、素质教育目标好文供参考!8/15(一)知识教学点1.使学生把握四边形的有关概念及四边形的内角和外角和定理。2.了解四边形的不稳定性及它在实际生产,生活中的应用。(二)能力练习点1.通过引导学生观察气象站的实例,培养学生从具体事物中抽象出几何图形的能力。2.通过推导四边形内角和定理,对学生渗透化归思想。3.会根据比较简单的条件画出指定的四边形。4.讲解四边形外角概念和外角定理时,联系三角形的有关概念对学生渗透类比思想。(三)德育渗透点使学生熟悉到这些四边形都是常见的,研究他们都有实际应用意义,从而激发学生学习新知识的爱好。(四)美育渗透点通过四边形内角和定理数学,渗透统一美,应用美。二、学法引导类比、观察、引导、讲解三、重点·难点·疑点及解决办法1.教学重点:四边形及其有关概念;熟练推导四边形外角和这一结论,并用此结论解决与四边形内外角有关计算问题。2.教学难点:理解四边形的有关概念中的一些细节问题;好文供参考!9/15四边形不稳定性的理解和应用。3.疑点及解决办法:四边形的定义中为什么要有“在平面内”,而三角形的定义中就没有呢?根据指定条件画四边形,关键是要分析好作图的顺序,一般先作一个角。四、课时安排2课时五、教具学具预备投影仪、胶片、四边形模型、常用画图工具六、师生互动活动设计教师引入新课,学生观察图形,类比三角形知识导出四边形有关概念;师生共同推导四边形内角和的定理,学生巩固内角和定理和应用;共同分析探索外角和定理,学生阅读相关材料。第一课时七、教学步骤复习引入在小学里已经对四边形、长方形、平形四边形的有关知识有所了解,但还很肤浅,这一章我们将比较系统地学习各种四边形的性质和判定分析它们之间的关系,并运用有关四边形的知识解决一些新问题。引入新课用投影仪打出课前画好的'教材中p119的图。好文供参考!10/15师问:在上图中你能把知道的长方形、正方形、平行四边形、梯形找出来吗?(启发学生找上述图形,最后教师用彩色笔勾出几个图形).讲解新课1.四边形的有关概念结合图形讲解四边形,四边形的边、顶点、角,凸四边形,四边形的对角线(同时学生在书上画出上述概念),讲解这些概念时:(1)要结合图形。(2)要与三角形类比。(3)讲清定义中的关键词语。如四边形定义中要说明为什么加上“同一平面内”而三角形的定义中为什么不加“同一平面内”(三角形的三个顶点一定在同一平面内,而四个点有可能不在同一平面内,如图4—2中的点。我们现在只研究平面图形,故在定义中加上“在同一平面内”的限制).(4)强调四边形对角线的作用,作为四边形的一种常用的辅助线,通过它可以把四边形问题转化为三角形来解(渗透化归思想),并观察图4-3用对角线分成的这些三角形与原四边形的关系。(5)强调四边形的表示方法,一定要按顶点顺序书写四边形如图4—1.(6)在判定一个四边形是不是凸四边形时,一定要按照定好文供参考!11/15义的要求把每一边都延长后再下结论如图4-4,图4-5.2.四边形内角和定理教师问:(1)在图4-3中对角线ac把四边形abcd分成几个三角形?(2)在图4-6中两条对角线ac和bd把四边形分成几个三角形?(3)若在四边形abcd如图4-7内任取一点o,从o向四个顶点作连线,把四边形分成几个三角形。我们知道,三角形内角和等于180°,那么四边形的内角和就等于:①2×180°=360°如图4—6;②4×180°-360°=360°如图4-7.例1已知:如图4—8,直线于b、于c.求证:(1);(2)。本例题是四边形内角和定理的应用,实际上它证实了两边相互垂直的两个角相等或互补的关系,何时用相等,何时用互补,假如需要应用,作两三步推理就可以证出。总结、扩展1.四边形的有关概念。2.四边形对角线的作用。3.四边形内角和定理。八、布置作业好文供参考!12/15教材p128中1(1)、2、3.九、板书设计四边形有关概念四边形内角和例1十、随堂练习教材p122中1、2、3.多边形的内角和与外角和教案初中数学多边形内角和教案【第四篇】1.会用多边形公式进行计算。2.理解多边形外角和公式。经历探究多边形内角和计算方法的过程,培养学生的合作交流意识力。让学生在观察、合作、讨论、交流中感受数学转化思想和实际应用价值,同时培养学生善于发现、积极思考、合作学习、勇于创新的学习态度。多边形的内角和。的应用。探索多边形的内角和与外角和公式过程。应用化归的数学方法,把多边形问题转化为三角形问题来解决。本节课采用“探究与互动”的教学方式,并配以真的情境好文供参考!13/15来引题。(一)探索多边形的内角和活动1:判断下列图形,从多边形上任取一点c,作对角线,判断分成三角形的个数。活动2:①从多边形的一个顶点出发,可以引多少条对角线?他们将多边形分成多少个三角形?②总结多边形内角和,你会得到什么样的结论?多边形边数分成三角形的个数图形内角和计算规律三角形31180°(3-2)·180°四边形4五边形5六边形6七边形7。。。。。。n边形n活动3:把一个五边形分成几个三角形,还有其他的分法吗?总结多边形的内角和公式一般的,从n边形的一个顶点出发可以引____条对角线,他们将n边形分为____个三角形,n边形的内角和等于180×______。好文供参考!14/15巩固练习:看谁求得又快又
本文标题:数学教案多边形内角和与外角和【汇编4篇】
链接地址:https://www.777doc.com/doc-12310448 .html