您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 山东省济南市济阳闻韶中学2023届高三上学期12月月考数学试题
试卷第1页,共3页济阳闻韶中学2020级高三上学期12月阶段性检测数学试题考试范围:高考范围;考试时间:120分钟;编制:高三数学组第I卷(选择题)一、单选题(共40分)1.已知集合21Axx,2,ByyxxA,则AB()A.2,1,1,2B.2,1,0,1,2C.1,1D.02.已知复数2ii1iz,则z()A.3B.5C.2D.13.如图,E,F分别是矩形ABCD的边CD,BC的中点,则2AEEF()A.3122ABADB.3322ABADC.1322ABADD.2ABAD4.设3log7a,1.12b,3.10.8c,则()A.bacB.cbaC.cbaD.cba5.袋内装有大小、形状完全相同的3个白球和2个黑球,从中不放回地摸球,设事件A=“第一次摸到白球”,事件B=“第二次摸到白球”,事件C=“第一次摸到黑球”,则下列说法中正确的是()A.A与B是互斥事件B.A与B不是相互独立事件C.B与C是对立事件D.A与C是相互独立事件6.已知函数fx的图象如图所示,则该函数的解析式为()A.2()eexxxfxB.2ee()xxfxxC.2()eexxxfxD.2ee()xxfxx7.把函数sin2fxx的图象向左平移5个单位,再将得到的曲线上所有点的横坐标变为原来的10倍,纵坐标不变,得到函数ygx的图象.若函数ygx在0,2上恰有3个零点,则的取值范围是()A.813,55B.1318,55C.1419,55D.914,558.已知三棱锥底面ABC是边长为2的等边三角形,顶点S与AB边中点D的连线SD垂直于底面ABC,且3SD,则三棱锥SABC的外接球半径为()A.3B.33C.15D.153二、多选题(共20分)9.已知一组不完全相同的数据的平均数为x,方差为2s,中位数为m,在这组数据中加入一个数x后得到一组新数据,其平均数为x,方差为2s,中位数为m,则下列判断一定正确的为()A.xxB.22ssC.22ssD.mm10.已知函数32fxxaxbxc(a,b,cR),则下列说法正确的是()A.若实数12,xx是fx的两个不同的极值点,且满足1212xxxx,则0a或6aB.函数fx的图象过坐标原点的充要条件是0c=C.若函数fx在R上单调,则23baD.若函数fx的图象关于点1,1f中心对称,则3a试卷第2页,共3页11.如图,正方体1111ABCDABCD的棱长为1,E,F,G分别为BC,1CC,1BB的中点,则()A.直线1DD与直线AF垂直B.直线1AG与平面AEF平行C.平面AEF截正方体所得的截面面积为98D.点C与点G到平面AEF的距离相等12.已知点(1,2)M,点P是双曲线C:221916xy左支上的动点,2F为其右焦点,N是圆D:22(5)1xy的动点,直线OP交双曲线右支于Q(O为坐标原点),则()A.28PFB.过点M作与双曲线C仅有一个公共点的直线恰有2条C.||||PMPN的最小值为525D.若2DPF△的内切圆E与圆D外切,则圆E的半径为32第II卷(非选择题)三、填空题(共20分)13.6512yxx的展开式中3xy的系数为______(用数字作答).14.设nS为正项等比数列{}na的前n项和,534,3,aaa成等差数列,则84SS的值为_________15.点0(3,2)P是圆221xy外一点,过点0P作圆的两条切线,切点分别为12,PP,则切点弦12PP所在直线方程为_________.16.已知函数e1xfxtxxx在区间0,上有且只有一个极值点,则实数t的取值范围为___________.四、解答题(共70分)17.已知数列na的各项均不为零,11a,前n项和nS满足*21112N2nnnnnSSa,.(1)求证:数列1nS是等差数列;(2)记1nnnbSS,求数列nb的前n项和nT.18.如图,在三棱柱111ABCABC-中,侧面11ABBA为矩形,平面11ABBA平面11ACCA,12,4,,ABAADE分别是11,BCAB的中点.(1)求证://DE平面11ACCA;(2)若侧面11ACCA是正方形,求直线11AC与平面ADE所成角的正弦值.19.在ABC中,角,,ABC所对的边分别为,,abc,且coscos1ABabc.(1)证明:,,acb成等比数列;(2)若3c,且3C,求ABC的周长.试卷第3页,共3页20.北京冬奥会的举办使得人们对冰雪运动的关注度和参与度持续提高.某地很多中小学开展了模拟冬奥会赛事的活动,为了深入了解学生在“自由式滑雪”和“单板滑雪”两项活动的参与情况,在该地随机选取了10所学校进行研究,得到如下数据:(1)从这10所学校中随机抽取2所,在抽取的2所学校参与“单板滑雪”的人数超过30人的条件下,求这2所学校参与“自由式滑雪”的人数超过30人的概率;(2)“自由式滑雪”参与人数超过40人的学校可以作为“基地学校”,现在从这10所学校中随机抽取3所,记X为选出“基地学校”的个数,求X的分布列和数学期望;(3)现在有一个“单板滑雪”集训营,对“滑行、转弯、停止”这3个动作技巧进行集训,且在集训中进行了多轮测试.规定:在一轮测试中,这3个动作至少有2个动作达到“优秀”,则该轮测试记为“优秀”.已知在一轮集训测试的3个动作中,甲同学每个动作达到“优秀”的概率均为23,每个动作互不影响且每轮测试互不影响.如果甲同学在集训测试中获得“优秀”次数的平均值不低于8次,那么至少要进行多少轮测试?21.已知A(3,0),B(-3,0),C是动点,满足ACBC(为常数),过C作x轴的垂线,垂足为H,记CH中点M的轨迹为,(1)若是椭圆,求此椭圆的离心率;(2)若(2,1)M在上,过点G(0,m)作直线l与交于P、Q两点,如果m值变化时,直线MP、MQ的倾斜角总保持互补,求△MPQ面积的最大值.22.已知214ln2fxxxax.(1)若函数fx在区间(0,)上单调递增,求实数a的取值范围;(2)若函数fx有两个极值点12,xx,证明:1210lnfxfxa答案第1页,共1页
本文标题:山东省济南市济阳闻韶中学2023届高三上学期12月月考数学试题
链接地址:https://www.777doc.com/doc-12313099 .html