您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 初中数学【7年级上】新人教数学7年级上同步训练:(1.5.1 乘方)
11.5有理数的乘方1.5.1乘方5分钟训练(预习类训练,可用于课前)1.填空题(1)求几个相同因数的积的运算,叫做_______,即nnaaaa个=an在an中,a叫做_______,n叫做______,an叫做_______;(2)正数的任何次幂都是______;负数的奇次幂是_______,负数的偶次幂是________;(3)乘方(-2)5的意义是____________________,结果为________;(4)-25的意义是____________________,结果为________;(5)在(-2)4中,-2是______,4是______,(-2)4读作_______或读作_______.思路解析:按照乘方定义及幂的结构解题.答案:(1)乘方底数指数幂(2)正数负数正数(3)5个-2的积-32(4)5个2的积的相反数-32(5)底数指数负二的四次幂负二的四次方2.把下列各式写成幂的形式,并指出底数是什么?指数是什么?(1)(-113)(-113)(-113)(-113);(2)(-0.1)×(-0.1)×(-0.1).思路解析:根据幂的意义写出.答案:(1)(-113)4,底数是-113,指数是4;(2)(-0.1)3,底数是-0.1,指数是3.10分钟训练(强化类训练,可用于课中)1.把下列各式写成幂的形式,并指出底数、指数各是什么?(1)(-1.2)×(-1.2)×(-1.2)×(-1.2)×(-1.2);(2)12×12×12×12×12×12;(3)2nbbbb个.思路解析:底数是负数或分数时,要用括号将底数括起来,在括号外边写上指数,如(-1.2)5不能写成-1.25,(12)6不能写成612.答案:(1)(-1.2)5,其中底数是-1.2,指数是5;(2)(12)6,其中底数是12,指数是6;(3)222nnnbbbbbb个,底数是b,指数是2n.2.判断题:2(1)-52中底数是-5,指数是2;()(2)一个有理数的平方总是大于0;()(3)(-1)2001+(-1)2002=0;()(4)2×(-3)2=(-6)2=36;()(5)223=49.()思路解析:区别底的符号与幂结果的符号,注意底数是负数和分数时要把该底数用小括号括起来.答案:(1)×(2)×(3)×(4)×(5)×3.计算:(1)(-6)4;(2)-64;(3)(-23)4;(4)-423.思路解析:本题中(-6)4表示4个-6相乘,-64表示64的相反数,切不可看成同样的,且结果互为相反数.(-23)4表示4个-23相乘,而-423表24除以3的商的相反数.要注意区别.答案:(1)1296;(2)-1296;(3)1681;(4)-163.4.计算:(1)(-1)100;(2)(-1)101;(3)(-0.2)3;(4)(+25)3;(5)(-12)4;(6)(+0.02)2.思路解析:根据乘方的定义进行计算.答案:(1)1;(2)-1;(3)-0.008;(4)8125;(5)116;(6)0.0004.5.计算下列各题:(1)(-3)2-(-2)3÷(-23)3;(2)(-1)·(-1)2·(-1)3……(-1)99·(-1)100.思路解析:由乘方的符号法则,易知对于一个有理数a,有(-a)2n=a2n,(-a)2n+1=-a2n+1(n为整数).本例应依此先确定幂的符号,再进行乘方运算.答案:(1)-18;(2)-1.快乐时光成功的秘诀一位演员巡回演出回来,他对朋友说:“我获得了极大的成功,我在露天广场上演出时,观众的掌声经久不息.”“你真走运,”他的朋友说,“下个星期再演出时就要困难一些了.”“为什么?”演员问.“天气预报说下周要降温,这样蚊子会少多了.”那人回答.30分钟训练(巩固类训练,可用于课后)31.6a2-2ab-2(3a2+12ab)的结果是()A.-3abB.-abC.3a2D.9a2答案:A2.填空:(1)若x0且x2=49,则x=_______;(2)若|x+2|+(y+1)2=0,则x=______,y=______,x3y2002=_______;(3)平方小于10的整数有_______个,其和为_______,积为________.答案:(1)-7(2)-2-1-8(3)7003.计算:(1)(-5)4;(2)-54;(3)-(-27)3;(4)[-(-27)]3;(5)-245;(6)(-45)2.思路解析:本题意在考查对(-a)n与-an的意义的理解,要注意二者的区别与联系.解:(1)原式=(-5)×(-5)×(-5)×(-5)=625;(2)原式=-5×5×5×5=-625;(3)原式=-(-27)(-27)(-27)=8343;(4)原式=(27)3=27×27×27=8343;(5)原式=-445=-165;(6)原式=(-45)(-45)=1625.4.计算:(1)-(14)2×(-4)2÷(-18)2;(2)(-33)×(-1527)÷(-42)×(-1)25.思路解析:,二要注意每一步运算中符号的确定.解:(1)原式=-116×16÷164=-64;(2)原式=(-27)×(-3227)÷(-16)×(-1)=27×3227×116=2.5.已知a、b为有理数,且(a+12)2+(2b-4)2=0,求-a2+b2的值.解:因为任意有理数的平方非负,可得:(a+12)2≥0,(2b-4)2≥0.又因为(a+12)2+(2b-4)2=0,得a+12=0,a=-12,2b-4=0,b=2,把a=-12,b=2代入a2+b2,得334.6.若n为自然数,求(-1)2n-(-1)2n+1+(-2)3的值.4思路解析:因为n为自然数,所以2n为偶数,2n+1为奇数.由负数的奇次幂是负数,负数的偶次幂是正数可知:(-1)2n=1,(-1)2n+1=-1.答案:-6.7.x2=64,x是几?x3=64,x是几?思路解析:由于任何数的偶次幂都是正数或0,平方也是偶次幂,所以平方是64的数有可能是正数,也有可能是负数,这两个数互为相反数.先求出正数,再求出其相反数.立方是正数(64)的数只能是正数,因为负数的奇次幂为负数,所以立方是64的数只能有一个.解:x=±8时,x2=64;x=4时,x3=64.8.求(1-212)×(1-213)×(1-214)…(1-219)×(1-2110)的值.思路解析:由于每一项都可以改写成两项积的形式,因此可利用分解相约的方法.答案:1120.9.1米长的小棒,第1次截去一半,第2次截去剩下的一半,如此截下去,第7次后剩下的小棒有多长?思路解析:此题的关键是找出每次截完后,剩下的小棒占整根棒的比例与所截次数之间的关系.现将它们的关系列表如下:所截次数1234567剩下木棒比例1214181161321641128=(12)1=(12)2=(12)3=(12)4=(12)5=(12)6=(12)7答案:1128米.
本文标题:初中数学【7年级上】新人教数学7年级上同步训练:(1.5.1 乘方)
链接地址:https://www.777doc.com/doc-12388595 .html