您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 01 【人教版】九年级上第一次月考数学试卷(含答案解析)
九年级(上)第一次月考数学试卷(解析版)一、选择题:1.下列方程中,是关于x的一元二次方程的有()A.x(2x﹣1)=2x2B.﹣2x=1C.ax2+bx+c=0D.x2=02.方程x2=x的解是()A.x=1B.x=0C.x1=﹣1,x2=0D.x1=1,x2=03.用配方法解方程x2﹣2x﹣5=0时,原方程应变形为()A.(x+1)2=6B.(x﹣1)2=6C.(x+2)2=9D.(x﹣2)2=94.设a,b是方程x2+x﹣2015=0的两个实数根,则a2+2a+b的值为()A.2012B.2013C.2014D.20155.为了庆祝教师节,市教育工会组织篮球比赛,赛制为单循环比赛(即每两个队比赛一场)共进行了45场比赛,则这次参加比赛的球队个数为()A.8B.9C.10D.116.等腰三角形两边长为方程x2﹣7x+10=0的两根,则它的周长为()A.12B.12或9C.9D.77.某超市一月份的营业额为200万元,已知第一季度的总营业额共1000万元,如果平均每月增长率为x,则由题意列方程应为()A.200(1+x)2=1000B.200+200×2x=1000C.200+200×3x=1000D.200[1+(1+x)+(1+x)2]=10008.在一幅长80cm,宽50cm的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如图所示,如果要使整个挂图的面积是5400cm2,设金色纸边的宽为xcm,那么x满足的方程是()A.x2+130x﹣1400=0B.x2+65x﹣350=0C.x2﹣130x﹣1400=0D.x2﹣65x﹣350=09.已知a,b是方程x2﹣6x+4=0的两实数根,且a≠b,则+的值是()A.7B.﹣7C.11D.﹣1110.方程(m﹣2)x2﹣x+=0有两个实数根,则m的取值范围()A.m>B.m≤且m≠2C.m≥3D.m≤3且m≠2二、填空题:11.把方程(2x+1)(x﹣2)=5﹣3x整理成一般形式后,得.12.如果最简二次根式与能合并,那么a=.13.若方程x2﹣3x﹣3=0的两根为x1,x2,则x12+3x2═.14.某种品牌的手机经过八、九月份连续两次降价,每部售价降低了19%,则平均每月降价的百分率是.15.关于x的一元二次方程x2+2x﹣2m+1=0的两实数根之积为负,则实数m的取值范围是.16.一个装有进水管和出水管的容器,从某一时刻起只打开进水管进水,经过一段时间,再打开出水管放水,至12分钟时,关停进水管.在打开进水管到关停进水管这段时间内,容器内的水量y(单位:升)与时间x(单位:分钟)之间的函数关系如图所示,关停进水管后,经过分钟,容器中的水恰好放完.17.如果m,n是两个不相等的实数,且满足m2﹣m=3,n2﹣n=3,那么代数式2n2﹣mn+2m+2015=.18.已知a是方程x2﹣2015x+1=0的一个根,则代数式a2﹣2014a+=.三、解答题:(共66分)19.(6分)化简求值:,其中x=﹣.20.(8分)选择适当的方法解下列方程:(1)x2﹣3x﹣1=0;(2)x2﹣2x﹣3=0.21.(6分)已知关于x的一元二次方程x2+x+m2﹣2m=0有一个实数根为﹣1,求m的值及方程的另一实根.22.(7分)解方程组:.23.(7分)如图,某农场有一块长40m,宽32m的矩形种植地,为方便管理,准备沿平行于两边的方向纵、横各修建一条等宽的小路,要使种植面积为1140m2,求小路的宽.24.(8分)已知关于x的一元二次方程x2﹣(2m+3)x+m2+2=0.(1)若方程有实数根,求实数m的取值范围;(2)若方程两实数根分别为x1、x2,且满足x12+x22=31+|x1x2|,求实数m的值.25.(7分)水果店张阿姨以每斤2元的价格购进某种水果若干斤,然后以每斤4元的价格出售,每天可售出100斤,通过调查发现,这种水果每斤的售价每降低0.1元,每天可多售出20斤,为保证每天至少售出260斤,张阿姨决定降价销售.(1)若将这种水果每斤的售价降低x元,则每天的销售量是斤(用含x的代数式表示);(2)销售这种水果要想每天盈利300元,张阿姨需将每斤的售价降低多少元?26.(8分)如图所示,点E、F分别为正方形ABCD边AB、BC的中点,DF、CE交于点M,CE的延长线交DA的延长线于G,试探索:(1)DF与CE的位置关系;(2)MA与DG的大小关系.27.(9分)如图,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,点D从点C出发沿CA方向以4cm/秒的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(0<t≤15).过点D作DF⊥BC于点F,连接DE,EF.(1)求证:AE=DF;(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值,如果不能,说明理由;(3)当t为何值时,△DEF为直角三角形?请说明理由.九年级(上)第一次月考数学试卷参考答案与试题解析一、选择题:1.下列方程中,是关于x的一元二次方程的有()A.x(2x﹣1)=2x2B.﹣2x=1C.ax2+bx+c=0D.x2=0【考点】一元二次方程的定义.【分析】根据一元二次方程的定义,未知数的最高次数是2;二次项系数不为0;是整式方程;含有一个未知数.【解答】解:A、是一元一次方程,故A错误;B、是分式方程,故B错误;C、a=0时是一元一次方程,故C错误;D、是一元二次方程,故D正确;故选:D.【点评】本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.2.方程x2=x的解是()A.x=1B.x=0C.x1=﹣1,x2=0D.x1=1,x2=0【考点】解一元二次方程-因式分解法.【分析】利用提公因式法解方程即可.【解答】解:x2=x,移项得x2﹣x=0,提公因式得x(x﹣1)=0,解得x1=1,x2=0.故选:D.【点评】本题主要考查了解一元二次方程.解题的关键是因式分解的应用.3.用配方法解方程x2﹣2x﹣5=0时,原方程应变形为()A.(x+1)2=6B.(x﹣1)2=6C.(x+2)2=9D.(x﹣2)2=9【考点】解一元二次方程-配方法.【分析】方程常数项移到右边,两边加上1变形即可得到结果.【解答】解:方程移项得:x2﹣2x=5,配方得:x2﹣2x+1=6,即(x﹣1)2=6.故选:B【点评】此题考查了解一元二次方程﹣配方法,熟练掌握完全平方公式是解本题的关键.4.设a,b是方程x2+x﹣2015=0的两个实数根,则a2+2a+b的值为()A.2012B.2013C.2014D.2015【考点】根与系数的关系;一元二次方程的解.【分析】先根据一元二次方程的解的定义得到a2+a﹣2015=0,即a2+a=2015,则a2+2a+b变形为a+b+2015,再根据根与系数的关系得到a+b=﹣1,然后利用整体代入的方法计算.【解答】解:∵a是方程x2+x﹣2015=0的根,∴a2+a﹣2015=0,即a2+a=2015,∴a2+2a+b=a+b+2015,∵a,b是方程x2+x﹣2015=0的两个实数根∴a+b=﹣1,∴a2+2a+b=a+b+2015=﹣1+2015=2014.故选C.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=,x1x2=.也考查了一元二次方程的解.5.为了庆祝教师节,市教育工会组织篮球比赛,赛制为单循环比赛(即每两个队比赛一场)共进行了45场比赛,则这次参加比赛的球队个数为()A.8B.9C.10D.11【考点】一元二次方程的应用.【分析】设这次有x队参加比赛,由于赛制为单循环形式(2014•鹤庆县校级模拟)等腰三角形两边长为方程x2﹣7x+10=0的两根,则它的周长为()A.12B.12或9C.9D.7【考点】解一元二次方程-因式分解法;三角形三边关系;等腰三角形的性质.【分析】利用因式分解法求出已知方程的解,即可确定三角形周长.【解答】解:方程分解因式得:(x﹣2)(x﹣5)=0,解得:x=2或x=5,当2为腰时,三边长分别为:2,2,5,不能构成三角形,舍去;当2为底时,三边长为5,5,2,周长为5+5+2=12.故选A.【点评】此题考查了解一元二次方程﹣因式分解法,三角形的三边关系,以及等腰三角形的性质,熟练掌握运算法则是解本题的关键.7.某超市一月份的营业额为200万元,已知第一季度的总营业额共1000万元,如果平均每月增长率为x,则由题意列方程应为()A.200(1+x)2=1000B.200+200×2x=1000C.200+200×3x=1000D.200[1+(1+x)+(1+x)2]=1000【考点】由实际问题抽象出一元二次方程.【分析】先得到二月份的营业额,三月份的营业额,等量关系为:一月份的营业额+二月份的营业额+三月份的营业额=1000万元,把相关数值代入即可.【解答】解:∵一月份的营业额为200万元,平均每月增长率为x,∴二月份的营业额为200×(1+x),∴三月份的营业额为200×(1+x)×(1+x)=200×(1+x)2,∴可列方程为200+200×(1+x)+200×(1+x)2=1000,即200[1+(1+x)+(1+x)2]=1000.故选:D.【点评】考查由实际问题抽象出一元二次方程中求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.得到第一季度的营业额的等量关系是解决本题的关键.8.在一幅长80cm,宽50cm的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如图所示,如果要使整个挂图的面积是5400cm2,设金色纸边的宽为xcm,那么x满足的方程是()A.x2+130x﹣1400=0B.x2+65x﹣350=0C.x2﹣130x﹣1400=0D.x2﹣65x﹣350=0【考点】由实际问题抽象出一元二次方程.【分析】本题可设长为(80+2x),宽为(50+2x),再根据面积公式列出方程,化简即可.【解答】解:依题意得:(80+2x)(50+2x)=5400,即4000+260x+4x2=5400,化简为:4x2+260x﹣1400=0,即x2+65x﹣350=0.故选:B.【点评】本题考查的是一元二次方程的运用,解此类题目要注意运用面积的公式列出等式再进行化简.9.已知a,b是方程x2﹣6x+4=0的两实数根,且a≠b,则+的值是()A.7B.﹣7C.11D.﹣11【考点】根与系数的关系.【分析】根据根与系数的关系得出a+b=6,ab=4,变形后代入求出即可.【解答】解:∵a,b是方程x2﹣6x+4=0的两实数根,且a≠b,∴a+b=6,ab=4,∴+====7,故选A.【点评】本题考查了根与系数的关系的应用,能熟记根与系数的关系定理是解此题的关键.10.方程(m﹣2)x2﹣x+=0有两个实数根,则m的取值范围()A.m>B.m≤且m≠2C.m≥3D.m≤3且m≠2【考点】根的判别式;一元二次方程的定义.【分析】根据一元二次方程的定义、二次根式有意义的条件和判别式的意义得到,然后解不等式组即可.【解答】解:根据题意得,解得m≤且m≠2.故选B.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.二、填空题:11.把方程(2x+1)(x﹣2)=5﹣3x整理成一般形式后,得2x2﹣7=0.【考点】一元二次方程的一般形式.【分析】通过去括号,移项、合并同类项可以把方程(2x+1)(x﹣2)=5﹣3x整理成一般形式.【解答】解:去括号,得2x2+x﹣4x﹣2=5﹣3x,移项、合并同类项,得2x2﹣7=0.故答案是:2x2﹣7
本文标题:01 【人教版】九年级上第一次月考数学试卷(含答案解析)
链接地址:https://www.777doc.com/doc-12426164 .html