您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 【人教版】九年级上期中数学试卷3 含答案
九年级(上)期中数学试卷一、选择题(每一道小题都给出代号为A、B、C、D的四个选项,其中有且只有一个选项符合题目要求,把符合题目要求的选项的代号直接填在答题框内相应题号下的方框中,不填、填错成一个方框内填写的代号超过一个,一律得0分;共10小题,每小题3分,共30分)1.已知关于x的一元二次方程x2+x+m2﹣4=0的一个根是0,则m的值是()A.0B.1C.2D.2或﹣22.用配方法解方程x2﹣8x+3=0,下列变形正确的是()A.(x+4)2=13B.(x﹣4)2=19C.(x﹣4)2=13D.(x+4)2=193.如图,AB是⊙O的直径,弦CD⊥AB,垂足为M,下列结论不一定成立的是()A.CM=DMB.OM=MBC.BC=BDD.∠ACD=∠ADC4.下列一元二次方程有实数根的是()A.x2﹣2x﹣2=0B.x2+2x+2=0C.x2﹣2x+2=0D.x2+2=05.已知关于x的一元二次方程(k﹣2)x2+2x﹣1=0有两个不相等的实数根,则k的取值范围为()A.k>1B.k>﹣1且k≠0C.k>1且k≠2D.k<16.观察如下图形,它们是按一定规律排列的,依照次规律,第n的图形中共有210个小棋子,则n等于()A.20B.21C.15D.167.若点(﹣1,4),(3,4)是抛物线y=ax2+bx+c上的两点,则此抛物线的对称轴是()A.直线x=﹣B.直线x=1C.直线x=3D.直线x=28.如图,⊙C过原点O,且与两坐标轴分别交于点A、B,点A的坐标为(0,4),点M是第三象限内上一点,∠BMO=120°,则⊙O的半径为()A.4B.5C.6D.29.如图,AB为⊙O直径,C为⊙O上一点,∠ACB的平方线交⊙O于点D,若AB=10,AC=6,则CD的长为()A.7B.7C.8D.810.已知二次函数y=ax2+bx+c的图象如图所示,则a的取值范围为()A.﹣1<a<0B.﹣1<a<C.0<a<D.<a<二、填空题(本大题共6小题,每小题3分,共18分)11.抛物线y=﹣(x+3)2+1的顶点坐标是.12.已知ab≠0,且a2﹣3ab﹣4b2=0,则的值为.13.已知关于x的方程a(x+m)2+c=0(a,m,c均为常数,a≠0)的根是x1=﹣3,x2=2,则方程a(x+m﹣1)2+c=0的根是.14.如图,AB,AC是⊙O,D是CA延长线上的一点,AD=AB,∠BDC=25°,则∠BOC=.15.已知△ABC的三个顶点都在⊙O上,AB=AC,⊙O的半径等于10cm,圆心O到BC的距离为6cm,则AB的长等于.16.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,图象与x轴交于A(x1,0)B(x2,0)两点,点M(x0,y0)是图象上另一点,且x0>1.现有以下结论:①abc>0;②b<2a;③a+b+c>0;④a(x0﹣x1)(x0﹣x2)<0.其中正确的结论是.(只填写正确结论的序号)三、解答题(本大题共9小题,共72分)17.解方程:(1)x2+2x﹣15=0(2)3x(x﹣2)=(2﹣x)18.已知抛物线的顶点是(4,2),且在x轴上截得的线段长为8,求此抛物线的解析式.19.定义:如果一元二次方程ax2+bx+c=0(a≠0)满足a+b+c=0,那么我们称这个方程为“凤凰”方程.已知x2+mx+n=0是“凤凰”方程,且有两个相等的实数根,求m2+n2的值.20.为响应党中央提出的“足球进校园”号召,我市在今年秋季确定了3所学校为我市秋季确定3所学校诶我市足球基地实验学校,并在全市开展了中小学足球比赛,比赛采用单循环制,即组内每两队之间进行一场比赛,若初中组共进行45场比赛,问初中共有多少个队参加比赛?21.如图,在⊙O中,=,∠ACB=60°.(1)求证:∠AOB=∠BOC=∠AOC;(2)若D是的中点,求证:四边形OADB是菱形.22.已知关于x的一元二次方程x2﹣(2m+1)x+m(m+1)=0.(1)求证:无论m取何值,方程总有两个不相等的实数根;(2)若△ABC的两边AB、AC的长是这个方程的两个实数根,且BC=8,当△ABC为等腰三角形时,求m的值.23.如图,O为正方形ABCD对角线上一点,以点O为圆心,OA长为半径的⊙O与BC相切于点E.(1)求证:CD是⊙O的切线;(2)若正方形ABCD的边长为10,求⊙O的半径.24.某商品的进价为每件40元,售价为每件50元,每个月可卖出210件;如果每件商品的售价每上涨1元,则每个月少卖10件(每件售价不能高于65元).设每件商品的售价上涨x元(x为正整数),每个月的销售利润为y元.(1)求y与x的函数关系式并直接写出自变量x的取值范围;(2)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?(3)每件商品的售价定为多少元时,每个月的利润恰为2200元?根据以上结论,请你直接写出售价在什么范围时,每个月的利润不低于2200元?25.如图,已知抛物线y=ax2+bx+3与x轴交于A、B两点,过点A的直线l与抛物线交于点C,其中A点的坐标是(1,0),C点坐标是(4,3).(1)求抛物线的解析式;(2)在(1)中抛物线的对称轴上是否存在点D,使△BCD的周长最小?若存在,求出点D的坐标,若不存在,请说明理由;(3)若点E是(1)中抛物线上的一个动点,且位于直线AC的下方,试求△ACE的最大面积及E点的坐标.九年级(上)期中数学试卷参考答案与试题解析一、选择题(每一道小题都给出代号为A、B、C、D的四个选项,其中有且只有一个选项符合题目要求,把符合题目要求的选项的代号直接填在答题框内相应题号下的方框中,不填、填错成一个方框内填写的代号超过一个,一律得0分;共10小题,每小题3分,共30分)1.已知关于x的一元二次方程x2+x+m2﹣4=0的一个根是0,则m的值是()A.0B.1C.2D.2或﹣2【考点】一元二次方程的解.【分析】一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.即把0代入方程求解可得m的值.【解答】解:把x=0代入方程程x2+x+m2﹣4=0得到m2﹣4=0,解得:m=±2,故选D.【点评】本题考查的是一元二次方程解的定义.能使方程成立的未知数的值,就是方程的解,同时,考查了一元二次方程的概念.2.用配方法解方程x2﹣8x+3=0,下列变形正确的是()A.(x+4)2=13B.(x﹣4)2=19C.(x﹣4)2=13D.(x+4)2=19【考点】解一元二次方程-配方法.【专题】计算题.【分析】先把常数项移到方程右边,再把方程两边加上16,然后把方程左边写成完全平方形式即可.【解答】解:x2﹣8x=﹣3,x2﹣8x+16=13,(x﹣4)2=13.故选C.【点评】本题考查了解一元二次方程﹣配方法:将一元二次方程配成(x+m)2=n的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.3.如图,AB是⊙O的直径,弦CD⊥AB,垂足为M,下列结论不一定成立的是()A.CM=DMB.OM=MBC.BC=BDD.∠ACD=∠ADC【考点】垂径定理.【分析】先根据垂径定理得CM=DM,,,得出BC=BD,再根据圆周角定理得到∠ACD=∠ADC,而OM与BM的关系不能判断.【解答】解:∵AB是⊙O的直径,弦CD⊥AB,∴CM=DM,,,∴BC=BD,∠ACD=∠ADC.故选:B.【点评】本题考查了垂径定理,圆心角、弧、弦之间的关系定理,圆周角定理;熟练掌握垂径定理,由垂径定理得出相等的弧是解决问题的关键.4.下列一元二次方程有实数根的是()A.x2﹣2x﹣2=0B.x2+2x+2=0C.x2﹣2x+2=0D.x2+2=0【考点】根的判别式.【分析】根据一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根判断即可.【解答】解:A、∵△=(﹣2)2﹣4×1×(﹣2)>0,∴原方程有两个不相等实数根;B、∵△=22﹣4×1×2<0,∴原方程无实数根;C、∵△=(﹣2)2﹣4×1×2<0,∴原方程无实数根;D、∵△=﹣4×1×2<0,∴原方程无实数根;故选A.【点评】此题考查了根的判别式与方程解的关系,一元二次方程ax2+bx+c=0(a≠0),当b2﹣4ac>0时,方程有两个不相等的实数根;当b2﹣4ac=0时,方程有两个相等的实数根;当b2﹣4ac<0时,方程无解.5.已知关于x的一元二次方程(k﹣2)x2+2x﹣1=0有两个不相等的实数根,则k的取值范围为()A.k>1B.k>﹣1且k≠0C.k>1且k≠2D.k<1【考点】根的判别式;一元二次方程的定义.【分析】根据关于x的一元二次方程(k﹣2)x2+2x﹣1=0有两个不相等的实数根,可得出判别式大于0,再求得k的取值范围.【解答】解:∵关于x的一元二次方程(k﹣2)x2+2x﹣1=0有两个不相等的实数根,∴△=4+4(k﹣2)>0,解得k>﹣1,∵k﹣2≠0,∴k≠2,∴k的取值范围k>﹣1且k≠2,故选C.【点评】本题考查了根的判别式,总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.6.观察如下图形,它们是按一定规律排列的,依照次规律,第n的图形中共有210个小棋子,则n等于()A.20B.21C.15D.16【考点】规律型:图形的变化类.【分析】由题意可知:排列组成的图形都是三角形,第一个图形中有1个小棋子,第二个图形中有1+2=3个小棋子,第三个图形中有1+2+3=6个小棋子,…由此得出第n个图形共有1+2+3+4+…+n=n(n+1),由此联立方程求得n的数值即可.【解答】解:∵第一个图形中有1个小棋子,第二个图形中有1+2=3个小棋子,第三个图形中有1+2+3=6个小棋子,…∴第n个图形共有1+2+3+4+…+n=n(n+1),∴n(n+1)=210,解得:n=20.故选:A.【点评】此题考查图形的变化规律,找出图形之间的联系,得出点的排列规律,利用规律解决问题.7.若点(﹣1,4),(3,4)是抛物线y=ax2+bx+c上的两点,则此抛物线的对称轴是()A.直线x=﹣B.直线x=1C.直线x=3D.直线x=2【考点】二次函数图象上点的坐标特征.【分析】因为两点的纵坐标都为4,所以可判此两点是一对对称点,利用公式x=求解即可.【解答】解:∵两点的纵坐标都为4,∴此两点是一对对称点,∴对称轴x===1.故选B.【点评】本题考查了如何求二次函数的对称轴,对于此类题目可以用公式法也可以将函数化为顶点式或用公式x=求解.8.如图,⊙C过原点O,且与两坐标轴分别交于点A、B,点A的坐标为(0,4),点M是第三象限内上一点,∠BMO=120°,则⊙O的半径为()A.4B.5C.6D.2【考点】圆内接四边形的性质;含30度角的直角三角形;圆周角定理.【分析】连接OC,由圆周角定理可知AB为⊙C的直径,再根据∠BMO=120°可求出∠BAO的度数,证明△AOC是等边三角形,即可得出结果.【解答】解:连接OC,如图所示:∵∠AOB=90°,∴AB为⊙C的直径,∵∠BMO=120°,∴∠BCO=120°,∠BAO=60°,∵AC=OC,∠BAO=60°,∴△AOC是等边三角形,∴⊙C的半径=OA=4.故选:A.【点评】本题考查了圆周角定理、圆内接四边形的性质、等边三角形的判定与性质;熟练掌握圆内接四边形的性质,证明三角形是等边三角形是解决问题的关键.9.如图,AB为⊙O直径,C为⊙O上一点,∠ACB的平方线交⊙O于点D,若AB=10,AC=6,则CD的长为()A.7B.7C.8D.8【考点】圆周角定理;全等三角形的判定与性质;勾股定理.【分析】作DF⊥CA,交CA的延长线于点F,作DG⊥CB于点G,连接DA,DB.由CD平分∠ACB,根据角平分线的性质得出DF=DG,由HL证明△AFD≌△BGD,△CDF≌△CDG,得出CF=7,
本文标题:【人教版】九年级上期中数学试卷3 含答案
链接地址:https://www.777doc.com/doc-12426375 .html