您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 22.3 实际问题与二次函数 三课时
第1课时教学内容22.3实际问题与二次函数(1).教学目标1.会求二次函数y=ax2+bx+c的最小(大)值.2.能够从实际问题中抽象出二次函数关系,并运用二次函数及性质解决最小(大)值等实际问题.3.根据不同条件设自变量x求二次函数的关系式和建立合适的直角坐标系.教学重点1.根据不同条件设自变量x求二次函数的关系式和建立合适的直角坐标系.2.求二次函数y=ax2+bx+c的最小(大)值.教学难点将实际问题转化成二次函数问题课时安排3课时.教案A第1课时教学内容22.3实际问题与二次函数(1).教学目标1.会求二次函数y=ax2+bx+c的最小(大)值.2.能够从实际问题中抽象出二次函数关系,并运用二次函数及性质解决最小(大)值等实际问题.教学重点求二次函数y=ax2+bx+c的最小(大)值.教学难点将实际问题转化成二次函数问题.教学过程一、导入新课在现实生活中,我们常常会遇到与二次函数及其图象有关的问题,如抛球、围墙、拱桥跨度等,利用二次函数的有关知识研究和解决这些问题,具有很现实的意义.从这节课开始,我们就共同解决这几个问题.二、新课教学问题1从地面竖直向上抛出一小球,小球的高度h(单位:m)与小球的运动时间t(单位:s)之间的关系式是h=30t-5t2(0≤t≤6).小球运动的时间是多少时,小球最高?小球运动中的最大高度是多少?教师引导学生找出问题中的两个变量:小球的高度h(单位:m)与小球的运动时间t(单位:s).然后让学生计算当t=1、t=2、t=3、t=4、t=5、t=6时,h的值是多少?再让学生根据算出的数据,画出函数h=30t-5t2(0≤t≤6)的图象(可见教材第49页图).根据函数图象,观察出小球运动的时间是多少时,小球最高?小球运动中的最大高度是多少?学生结合图象回答:这个函数的图象是一条抛物线的一部分.这条抛物线的顶点是这个函数的图象的最高点,也就是说,当t取顶点的横坐标时,这个函数有最大值.教师引导学生求函数的顶点坐标,解决这个问题.当t=-ab2=-)5(230=3时,h有最大值abac442=)5(4302=45.答:小球运动的时间是3s时,小球最高.小球运动中的最大高度是45m.问题2如何求出二次函数y=ax2+bx+c的最小(大)值?学生根据问题1归纳总结:当a>0(a<0),抛物线y=ax2+bx+c的顶点是最低(高)点,也就是说,当x=-ab2时,二次函数y=ax2+bx+c有最小(大)值abac442.三、巩固练习探究1用总长为60m的篱笆围成矩形场地,矩形面积S随矩形一边长l的变化而变化.当l是多少米时,场地的面积S最大?教师引导学生参照问题1的解法,先找出两个变量,然后写出S关于l的函数解析式,最后求出使S最大的l值.解:矩形场地的周长是60m,一边长为lm,所以另一边长(260-l)m.场地的面积S=l(30-l),即S=-l2+30l(0<l<30).因此,当l=-ab2=-)1(230=15时,S有最大值abac442=)1(4302=225.也就是说,当l是15m时,场地的面积S最大.四、课堂小结利用二次函数解决实际问题的过程是什么?找出变量和自变量;然后列出二次函数的解析式;再根据自变量的实际意义,确定自变量的取值范围;最后在自变量的取值范围内,求出二次函数的最小(大)值.五、布置作业习题22.3第1、4题.第2课时教学内容22.3实际问题与二次函数(2).教学目标1.会求二次函数y=ax2+bx+c的最小(大)值.2.能够从实际问题中抽象出二次函数关系,并运用二次函数及性质解决最小(大)值等实际问题.3.根据不同条件设自变量x求二次函数的关系式.教学重点1.根据不同条件设自变量x求二次函数的关系式.2.求二次函数y=ax2+bx+c的最小(大)值.教学难点将实际问题转化成二次函数问题.教学过程一、导入新课复习利用二次函数解决实际问题的过程导入新课的教学.二、新课教学探究2:某商品现在的售价为每件60元,每星期可卖出300件.市场调查反映:如调整价格,每涨价1元,每星期要少卖出10件;每降价1元,每星期可多卖出20件.已知商品的进价为每件40元,如何定价才能使利润最大?教师引导学生阅读问题,理清自变量和变量.在这个探究中,某商品调整,销量会随之变化.调整的价格包括涨价和降价两种情况.(1)我们先看涨价的情况.设每件涨价x元,每星期则少卖l0x件,实际卖出(300-l0x)件,销售额为(60+x)(300-l0x)元,买进商品需付40(300-10x)元.因此,所得利润y=(60+x)(300-l0x)一40(300-l0x),即y=-l0x2+100x+6000.列出函数解析式后,教师引导学生怎样确定x的取值范围呢?由300-l0x≥0,得x≤30.再由x≥0,得0≤x≤30.根据上面的函数,可知:当x=5时,y最大,也就是说,在涨价的情况下,涨价5元,即定价65元时,利润最大,最大利润是6250元.(2)我们再看降价的情况.设每件降价x元,每星期则多卖20x件,实际卖出(300+20x)件,销售额为(60-x)(300+20x)元,买进商品需付40(300+20x)元.因此,所得利润y=(60-x)(300+20x)-40(300+20x),即y=-20x2+100x+6000.怎样确定x的取值范围呢?由降价后的定价(60-x)元,不高于现价60元,不低于进价40元可得0≤x≤20.当x=2.5时,y最大,也就是说,在降价的情况下,降价2.5元,即定价57.5元时,利润最大,最大利润是6125元.由(1)(2)的讨论及现在的销售状况,你知道应如何定价能使利润最大了吗?学生最后的出答案:综合涨价和降价两种情况及现在的销售状况可知,定价65元时,利润最大.三、巩固练习1.某商场购进一批单价为16元的日用品,经试销发现,若按每件20元的价格销售时,每月能卖360件,若按每件25元的价格销售时,每月能卖210件,假定每月销售件数y(件)是价格x(元/件)的一次函数,则y与x之间的关系式是,销售所获得的利润为w(元)与价格x(元/件)的关系式是.2.某商店销售一种商品,每件的进价为2.50元,根据市场调查,销售量与销售单价满足如下关系:在一段时间内,单价是13.50元时,销售量为500件,而单价每降低1元,就可以多售出200件.设每件商品降价x元,总利润为y元,请你写出y与x的函数关系式,并分析,当销售单价为多少元时,获利最大,最大利润是多少?参考答案:1.y=-30x+960,w=(x-16)(-30x+960)2.y=(13.5-x-2.5)(500+200x)=-200x2+1700x+5500,顶点坐标为(4.25,9112.5),即当每件商品降价4.25元,即售价为13.5-4.25=9.25时,可取得最大利润9112.5元.四、课堂小结今天你学习了什么?有什么收获?五、布置作业习题22.3第8题.第3课时教学内容22.3实际问题与二次函数(3).教学目标1.根据不同条件建立合适的直角坐标系.2.能够从实际问题中抽象出二次函数关系,并运用二次函数及性质解决最小(大)值等实际问题.教学重点1.根据不同条件建立合适的直角坐标系.2.将实际问题转化成二次函数问题.教学难点将实际问题转化成二次函数问题.教学过程一、导入新课复习二次函数y=ax2的性质和特点,导入新课的教学.二、新课教学探究3下图中是抛物线形拱桥,当拱顶离水面2m时,水面宽4m.水面下降1m,水面宽度增加多少?教师引导学生审题,然后根据条件建立直角坐标系.怎样建立直角坐标系呢?因为二次函数的图象是抛物线,建立适当的坐标系,就可以求出这条抛物线表示的二次函数.为解题简便,以抛物线的顶点为原点,以抛物线的对称轴为y轴建立直角坐标系.教师可让学生自己建立直角坐标系,然后求出二次函数的解析式.如上图,设这条抛物线表示的二次函数为y=ax2.由抛物线经过点(2,-2),可得-2=a×22,a=-21.这条抛物线表示的二次函数为y=-21x2.当水面下降1m时,水面的纵坐标为-3,根据上面的函数解析式可得水面的横坐标为6,-6,据此可求出这时的水面宽度是26.答:水面下降1m,水面宽度增加26-4m.三、巩固练习某公园要建造一个圆形的喷水池,在水池中央垂直于水面竖一根柱子,上面的A处安装一个喷头向外喷水.连喷头在内,柱高为0.8m.水流在各个方向上沿形状相同的抛物线路径落下,如左图所示.根据设计图纸已知:如右图中所示直角坐标系中,水流喷出的高度y(m)与水平距离x(m)之间的函数关系式是y=-x2+2x+45.(1)喷出的水流距水平面的最大高度是多少?(2)如果不计其他的因素,那么水池至少为多少时,才能使喷出的水流都落在水池内?教师让学生讨论、交流,如何将文学语言转化为数学语言,得出问题(1)就是求函数y=-x2+2x+45最大值,问题(2)就是求右图B点的横坐标.学生独立解答,教师巡视指导,最后让一两位同学板演,教师讲评.四、课堂小结今天你学习了什么?有什么收获?五、布置作业习题22.3第6、7题.
本文标题:22.3 实际问题与二次函数 三课时
链接地址:https://www.777doc.com/doc-12428730 .html