您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 初中数学【9年级上】22.3《实际问题与二次函数》(第1课时)ppt课件
九年级上册22.3实际问题与二次函数(第1课时)•本节课是在学生学习完二次函数的图象和性质的知识的基础上的进一步拓展与应用.课件说明•学习目标:能够表示实际问题中变量之间的二次函数关系,会运用二次函数的顶点坐标求出实际问题的最大值(或最小值).•学习重点:探究利用二次函数的最大值(或最小值)解决实际问题的方法.课件说明从地面竖直向上抛出一小球,小球的高度h(单位:m)与小球的运动时间t(单位:s)之间的关系式是h=30t-5t2(0≤t≤6).小球的运动时间是多少时,小球最高?小球运动中的最大高度是多少?1.创设情境,引出问题小球运动的时间是3s时,小球最高.小球运动中的最大高度是45m.303225bta(),2243045445acbha().2.结合问题,拓展一般由于抛物线y=ax2+bx+c的顶点是最低(高)点,当时,二次函数y=ax2+bx+c有最小(大)值abx2.abacy442如何求出二次函数y=ax2+bx+c的最小(大)值?3.类比引入,探究问题整理后得用总长为60m的篱笆围成矩形场地,矩形面积S随矩形一边长l的变化而变化.当l是多少米时,场地的面积S最大?解:,llS302∴当时,S有最大值为.225442abac当l是15m时,场地的面积S最大.(0<l<30).1512302abl()llS260()4.归纳探究,总结方法2.列出二次函数的解析式,并根据自变量的实际意义,确定自变量的取值范围.3.在自变量的取值范围内,求出二次函数的最大值或最小值.1.由于抛物线y=ax2+bx+c的顶点是最低(高)点,当时,二次函数y=ax2+bx+c有最小(大)值abx2.abacy4425.运用新知,拓展训练为了改善小区环境,某小区决定要在一块一边靠墙(墙长25m)的空地上修建一个矩形绿化带ABCD,绿化带一边靠墙,另三边用总长为40m的栅栏围住(如下图).设绿化带的BC边长为xm,绿化带的面积为ym2.(1)求y与x之间的函数关系式,并写出自变量x的取值范围.(2)当x为何值时,满足条件的绿化带的面积最大?DCBA25m(1)如何求二次函数的最小(大)值,并利用其解决实际问题?(2)在解决问题的过程中应注意哪些问题?你学到了哪些思考问题的方法?6.课堂小结教科书习题22.3第1,4,5题.7.布置作业
本文标题:初中数学【9年级上】22.3《实际问题与二次函数》(第1课时)ppt课件
链接地址:https://www.777doc.com/doc-12430939 .html