您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 初中数学【9年级下】锐角三角函数第一节《锐角三角函数(1)》导学案
1/428.1锐角三角函数(1)——正弦【学习目标】1.经历当直角三角形的锐角固定时,它的对边与斜边的比值都固定(即正弦值不变)这一事实。2.能根据正弦概念正确进行计算【学习重点】理解正弦(sinA)概念,知道当直角三角形的锐角固定时,它的对边与斜边的比值是固定值这一事实.【学习难点】当直角三角形的锐角固定时,,它的对边与斜边的比值是固定值的事实。一、旧知回顾1、如图在Rt△ABC中,∠C=90°,∠A=30°,BC=10m,求AB2、如图在Rt△ABC中,∠C=90°,∠A=30°,AB=20m,求BC二、新知学习问题:为了绿化荒山,某地打算从位于山脚下的机井房沿着山坡铺设水管,在山坡上修建一座扬水站,对坡面的绿地进行喷灌.现测得斜坡与水平面所成角的度数是30°,为使出水口的高度为35m,那么需要准备多长的水管?思考1:如果使出水口的高度为50m,那么需要准备多长的水管?;如果使出水口的高度为am,那么需要准备多长的水管?;结论:直角三角形中,30°角的对边与斜边的比值思考2:在Rt△ABC中,∠C=90°,∠A=45°,∠A对边与斜边的比值是一个定2/4CBA值吗?如果是,是多少?结论:直角三角形中,45°角的对边与斜边的比值教师点拨:从上面这两个问题的结论中可知,在一个Rt△ABC中,∠C=90°,当∠A=30°时,∠A的对边与斜边的比都等于12,是一个固定值;当∠A=45°时,∠A的对边与斜边的比都等于22,也是一个固定值.这就引发我们产生这样一个疑问:当∠A取其他一定度数的锐角时,它的对边与斜边的比是否也是一个固定值?探究:任意画Rt△ABC和Rt△A′B′C′,使得∠C=∠C′=90°,∠A=∠A′=a,那么''''BCBCABAB与有什么关系.你能解释一下吗?结论:这就是说,在直角三角形中,当锐角A的度数一定时,不管三角形的大小如何,∠A的对边与斜边的比正弦函数概念:规定:在Rt△BC中,∠C=90°,∠A的对边记作a,∠B的对边记作b,∠C的对边记作c.在Rt△BC中,∠C=90°,我们把锐角A的对边与斜边的比叫做∠A的正弦,记作sinA,即sinA==ac.sinA=AaAc的对边的斜边例如,当∠A=30°时,我们有sinA=sin30°=;3/4(2)1353CBA(1)34CBA当∠A=45°时,我们有sinA=sin45°=.学生展示:例1如图,在Rt△ABC中,∠C=90°,求sinA和sinB的值.随堂练习:做课本第64页练习.三、知识梳理在直角三角形中,当锐角A的度数一定时,不管三角形的大小如何,∠A的对边与斜边的比都是.在Rt△ABC中,∠C=90°,我们把锐角A的对边与斜边的比叫做∠A的,记作,四、学习评价【当堂检测】1.三角形在正方形网格纸中的位置如图所示,则sinα的值是﹙﹚A.43B.34C.53D.542.如图,在直角△ABC中,∠C=90o,若AB=5,AC=4,则sinA=()A.35B.45C.34D.433.在△ABC中,∠C=90°,BC=2,sinA=23,则边AC的长是()A.13B.3C.43D.54.如图,已知点P的坐标是(a,b),则sinα等于()4/4A.abB.baC.2222.abDabab作业设置:习题28.1复习巩固第1题、第2题.(只做与正弦函数有关的部分)【自我评价】1.本节课有困惑的题目是:2.本节课的学习收获是:
本文标题:初中数学【9年级下】锐角三角函数第一节《锐角三角函数(1)》导学案
链接地址:https://www.777doc.com/doc-12439359 .html