您好,欢迎访问三七文档
基于柔性生产线立体仓库的设计毕业论文基于柔性生产线立体仓库的设计基于柔性生产线立体仓库的设计目录摘要································································IAbstract···························································II一、前言·····························································1(一)目的和意义···················································1(二)研究领域·····················································1二、立体仓库系统各单元结构及其工作原理·······························3(一)立体仓库系统单元结构图·······································3(二)立体仓储库···················································3(三)Z轴运动机构·················································4(四)X\Y轴运动机构···············································5三、系统硬件设计·····················································6(一)总体设计·····················································6(二)可编程控制器的选型···········································62.1S7-200CPU的选择············································62.2EM232模拟量输出模块·········································8(三)立体仓库的系统介绍MCGS组态软件应用··························93.1立体仓库的简述··············································93.2立体仓库的优越性···········································103.3立体仓库一般基本组成部分···································11四、系统的软件设计··················································12(一)系统的总体程序设计··········································121.1I/0地址分配表··············································121.2系统的程序流程图及程序编制·································12(二)旋转编码器程序编制··········································12(三)步进电机的控制及程序编制···································133.1指令说明···················································133.2PTO/PWM控制寄存器··········································16基于柔性生产线立体仓库的设计3.3主要程序的编写·············································18(四)控制器的法杖方向············································184.1可编程控制器的构成及工作原理·······························194.2可编程控制器的特点·········································204.3可编程控制器的主要功能·····································204.4电动机的介绍与选择·········································214.5变频器的介绍与选择·········································244.6接触器的介绍与选择·········································254.7目标料仓号及仓位号的设置···································26五、操作模式和过程··················································27(一)机械手操作模式和过程·······································27结论与展望·························································29参考文献···························································30附录·······························································31致谢·······························································39基于柔性生产线立体仓库的设计1一、绪论(一)课题的目的和意义随着我国经济的迅速发展,以及经济全球化的趋势愈发明显,物流产业的发展水平直接影响到了企业自身发展状况,而货物仓储又是物流产业的一个重要环节,当前我国仓储事业发展水平良莠不齐,大部分仓库依然依靠人工管理、搬运,因此搬运效率过低,直接影响物资的流通。我设计的立体仓储电控系统主要运用PLC可编程控制器控制货物的搬运和仓储,同时,在系统中还运用了传感器元件,用来检测货物位置等,并将检测到的信号传递到PLC中,在这期间机械手同时工作,最终机械手按PLC中预先编排的指令将货物放入不同的仓库中。本人认为该系统的自动化程度较高,同时存取货物较合理,能够有效的提高货物仓取能力,同时由于采用了机械手,该系统同样能够较大程度的降低工人的劳动强度,提高工作效率。(二)课题的研究领域从该系统的配件方面看,它包括了许多工业元器件,如PLC可编程控制器、步进电机、直流无刷电机、旋转编码器精确定位等技术。从中可以看出该课题的研究领域主要包括:步进电机控制技术、直流无刷电机控制技术、检测回馈技术、货物精确定位技术等。由于可编程控制器(PLC)是专为在工业环境下应用而设计的一种工业控制计算机,具有抗干扰能力强、可靠性极高、体积小等显著优点,是实现机电一体化的理想控制装置。因此在设计货物分拣以及仓储系统时,PLC可编程控制器无疑起到了关键的作用,通过PLC可编程控制器的控制,我们可以提高系统的可靠性,而且由于其具有较高的抗干扰能力,因此使用PLC可编程控制器是实现该机电一体化设备的理想控制装置。而这一通过PLC可编程控制器为核心器件设计的货物分拣及仓储系统的设计思路,对于物流、仓储等领域也具有较高的参考价值。步进电机是数字控制系统中的执行电动机,当系统将一个电脉冲信号加到步进电机定子绕组时,转子就转一步,当电脉冲按某一相序加到电动机时,转子沿某一方向转动的步数等于电脉冲个数。因此,改变输入脉冲的数目就能控制步进电动机转子机械位移的大小;改变输入脉冲的通电相序,就能控制步进电动机转子机械位移的方向,实现位置的控制。当电脉冲按某一相序连续加到步进电动机时,转子以正比于电脉冲频率的转速沿某一方向旋转。因此,改变电脉冲的频率大小和通电相序,就能控制步进电动机的转速和转向,实现宽广范围内速度的无级平滑控制。无刷直流电机是同步电机的一种,也就是说电机转子的转速受电机定子旋转磁场的速度及转子极数(P)影响:N=120.f/P。在转子极数固定情况下,改基于柔性生产线立体仓库的设计2变定子旋转磁场的频率就可以改变转子的转速。直流无刷电机即是将同步电机加上电子式控制(驱动器),控制定子旋转磁场的频率并将电机转子的转速回授至控制中心反复校正,以期达到接近直流电机特性的方式。也就是说直流无刷电机能够在额定负载范围内当负载变化时仍可以控制电机转子维持一定的转速。传感器的检测技术在现代工业中起了至关重要的作用,尤其是在自动化流水线上,它可以取代人眼的作用,来辨别货物的位置,同时诸如光电开关、压力传感器等传感元器件同样也能判断货物是否到位,以进行下一步工作。基于柔性生产线立体仓库的设计3二、立体仓库系统各单元结构及其工作原理(一)立体仓库系统单元结构图TVT-4000E立体仓库系统单元结构图如图2-1所示。(1-1)(1-2)(1-3)图2-1立体仓库系统单元结构图(二)立体仓储库立体仓储库由25个仓储位组成,每个仓储位都装有检测传感器实时监控货物的有无,此立体仓储库包含原材料区、成品区和废品区可以通过程序控制,也可通过用户的需求自己编写程序实现对货物在立体仓储库内的自由存取,如图2-2所示。基于柔性生产线立体仓库的设计4图2-2立体仓储库结构图(三)Z轴运动机构由夹紧气缸(1-2-1)、旋转臂(1-2-2)、旋转步进电机(1-2-3)、推力轴承(1-2-4)、导轨(1-2-5)、Z轴步进电机(1-2-6)、滚珠丝杠(1-2-7)、型材立柱(1-2-8)等组成。Z轴运动机构(1-2)主要是实现货物的自动存取,如图2-3所示。(1-2-1)(1-2-2)(1-2-3)(1-2-4)(1-2-5)(1-2-6)(1-2-7)(1-2-8)图2-3Z轴运动机构结构图基于柔性生产线立体仓库的设计5(四)X\Y轴运动机构X\Y轴运动机构由Y轴直流无刷电机(1-3-1)、X轴直流无刷电机(1-3-2)、X轴导轨(1-3-3)、减速机(1-3-4)组成。X\Y轴运动机构主要是采用齿轮齿条机构实现水平方向的运动,如图2-4所示。(1-3-1)(1-3-2)(1-3-3)(1-3-4)图2-4X\Y轴运动机构基于柔性生产线立体仓库的设计6三、系统硬件设计(一)总体设计根据系统控制要求,及设备状态,控制程序主要完成以下任务:(1)出入库判断及仓库状态的扫描,确定相应的库位及X轴、Y轴坐标;(2)根据坐标,各轴电机经加减速精确定位;(3)根据时序关系,确定状态,完成货物出入库。系统的组成如图3-1所示。图3-1系统组成图(二)可编程控制器的选型为了提高仓库的仓储能力,降低工人的劳动强度,提高仓库的自动化程度,而PLC编程控制器恰恰具有可靠性高、.编程方便、易于使用、逻辑功能强、体积小的特点,并且其有网络通讯功能,可附加高性能模块对模拟量进行处理,实现各种复杂控制功能。因此在我的仓储电控系统中,我选择了使用PLC可编程控制器,作为核心控制件。2.1S7-200CPU的选择西门子提供多种类型的CPU以适应各种应用要求。不同类型的CPU具有不同的数字量I/O点数、内存容量等规格参数。目前提供的S7-200CPU有:CPU221、CPU222、CPU224、CPU226和CPU226XM。S7-200CPU规格如表3.1所示。按以上S7-200CPU规格所示,由于该系统需要的PLC输入端接口较多,因此选用的PLC可编程控制器应为CPU226系列,该CPU为直流供电,直流数字输出,数字量输出点是晶体管,因此选择DC/DC/DC基于柔性生产线立体仓库
本文标题:立体仓库设计
链接地址:https://www.777doc.com/doc-1248667 .html