您好,欢迎访问三七文档
当前位置:首页 > 办公文档 > 总结/报告 > 2023年高二的数学的知识点总结归纳 高二数学知识点归纳大全
参考资料,不熬夜1/52023年高二的数学的知识点总结归纳高二数学知识点归纳大全【预览】此例优秀文档“2023年高二的数学的知识点总结归纳高二数学知识点归纳大全”是由三一刀客网友为您分享整理的,供您参考学习之用,希望对您有所帮助,喜欢就下载支持吧!高二的数学的知识点总结归纳高二数学知识点归纳篇1(1)用简单随机抽样从含有n个个体的总体中抽取一个容量为n的样本时,每次抽取一个个体时任一个体被抽到的概率为;在整个抽样过程中各个个体被抽到的概率为(2)简单随机抽样的特点是,逐个抽取,且各个个体被抽到的概率相等;(3)简单随机抽样方法,体现了抽样的客观性与公平性,是其他更复杂抽样方法的基础.(4)简单随机抽样是不放回抽样;它是逐个地进行抽取;它是一种等概率抽样(1)抽签法:先将总体中的所有个体(共有n个)编号(号码可从1到n),并把号码写在形状、大小相同的号签上(号签可用小球、卡片、纸条等制作),然后将这些号签放在同一个箱子里,进行均匀搅拌,抽签时每次从中抽一个号签,连续抽取参考资料,不熬夜2/5n次,就得到一个容量为n的样本适用范围:总体的个体数不多时优点:抽签法简便易行,当总体的个体数不太多时适宜采用抽签法.(2)随机数表法:随机数表抽样“三步曲”:第一步,将总体中的个体编号;第二步,选定开始的数字;第三步,获取样本号码概率:相关高中数学知识点:系统抽样当整体中个体数较多时,将整体均分为几个部分,然后按一定的规则,从每一个部分抽取1个个体而得到所需要的样本的方法叫系统抽样。(1)采用随机方式将总体中的个体编号;(2)将整个编号进行均匀分段在确定相邻间隔k后,若不能均匀分段,即=k不是整数时,可采用随机方法从总体中剔除一些个体,使总体中剩余的个体数n′满足是整数;(3)在第一段中采用简单随机抽样方法确定第一个被抽得的个体编号l;(4)依次将l加上ik,i=1,2,…,(n-1),得到其余被抽取的个体的编号,从而得到整个样本。相关高中数学知识点:分层抽样当已知总体由差异明显的几部分组成时,常将总体分成几部分,然后按照各部分所占的比例进行抽样,这种抽样叫做分层抽样,其所分成的各个部分叫做层。参考资料,不熬夜3/5利用分层抽样抽取样本,每一层按照它在总体中所占的比例进行抽取。在抽样中,如果每次抽出个体后不再将它放回总体,称这样的抽样为不放回抽样;如果每次抽出个体后再将它放回总体,称这样的抽样为放回抽样.随机抽样、系统抽样、分层抽样都是不放回抽样(1)分层抽样适用于差异明显的几部分组成的情况;(2)在每一层进行抽样时,在采用简单随机抽样或系统抽样;(3)分层抽样充分利用已掌握的信息,使样具有良好的代表性;(4)分层抽样也是等概率抽样,而且在每层抽样时,可以根据具体情况采用不同的抽样方法,因此应用较为广泛。高二的数学的知识点总结归纳高二数学知识点归纳篇2内容解读了解向量的实际背景,掌握向量、零向量、平行向量、共线向量、单位向量、相等向量等概念,理解向量的几何表示,掌握平面向量的基本定理。注意对向量概念的理解,向量是可以自由移动的,平移后所得向量与原向量相同;两个向量无法比较大小,它们的模可比较大小。内容解读向量的运算要求掌握向量的加减法运算,会用平参考资料,不熬夜4/5行四边形法则、三角形法则进行向量的加减运算;掌握实数与向量的积运算,理解两个向量共线的含义,会判断两个向量的平行关系;掌握向量的数量积的运算,体会平面向量的数量积与向量投影的关系,并理解其几何意义,掌握数量积的坐标表达式,会进行平面向量积的运算,能运用数量积表示两个向量的夹角,会用向量积判断两个平面向量的垂直关系。命题规律命题形式主要以选择、填空题型出现,难度不大,考查重点为模和向量夹角的定义、夹角公式、向量的坐标运算,有时也会与其它内容相结合。内容解读掌握线段的定比分点和中点坐标公式,并能熟练应用,求点分有向线段所成比时,可借助图形来帮助理解。命题规律重点考查定义和公式,主要以选择题或填空题型出现,难度一般。由于向量应用的广泛性,经常也会与三角函数,解析几何一并考查,若出现在解答题中,难度以中档题为主,偶尔也以难度略高的题目。内容解读向量与三角函数的综合问题是高考经常出现的问题,考查了向量的知识,三角函数的知识,达到了高考中试题的覆盖面的要求。命题规律命题以三角函数作为坐标,以向量的坐标运算或向量与解三角形的内容相结合,也有向量与三角函数图象平移结合的问题,属中档偏易题。内容解读平面向量与函数交汇的问题,主要是向量与二次参考资料,不熬夜5/5函数结合的问题为主,要注意自变量的取值范围。命题规律命题多以解答题为主,属中档题。内容解读向量的坐标表示实际上就是向量的代数表示.在引入向量的`坐标表示后,使向量之间的运算代数化,这样就可以将“形”和“数”紧密地结合在一起.因此,许多平面几何问题中较难解决的问题,都可以转化为大家熟悉的代数运算的论证.也就是把平面几何图形放到适当的坐标系中,赋予几何图形有关点与平面向量具体的坐标,这样将有关平面几何问题转化为相应的代数运算和向量运算,从而使问题得到解决.命题规律命题多以解答题为主,属中等偏难的试题。
本文标题:2023年高二的数学的知识点总结归纳 高二数学知识点归纳大全
链接地址:https://www.777doc.com/doc-12535779 .html