您好,欢迎访问三七文档
当前位置:首页 > 幼儿/小学教育 > 小学教育 > 2024年高二数学教案_高二数学教学课程(通用4篇)
1/82024年高二数学教案_高二数学教学课程(通用4篇)作为一名教师,通常需要准备好一份教案,编写教案助于积累教学经验,不断提高教学质量。教案书写有哪些要求呢?我们怎样才能写好教案呢?下面是我给大家分享的“2024年高二数学教案_高二数学教学课程(通用4篇)”,欢迎大家参考下载分享借鉴,希望对大家能够有所帮助。高二数学教案高二数学教学课程【第一篇】教学目标1、知识与技能(1)理解并掌握正弦函数的定义域、值域、周期性、(小)值、单调性、奇偶性;(2)能熟练运用正弦函数的性质解题。2、过程与方法通过正弦函数在r上的图像,让学生探索出正弦函数的性质;讲解例题,总结方法,巩固练习。3、情感态度与价值观通过本节的学习,培养学生创新能力、探索归纳能力;让学生体验自身探索成功的喜悦感,培养学生的自信心;使学生认识到转化“矛盾”是解决问题的有效途经;培养学生形成实事求是的科学态度和锲而不舍的钻研精神。2/8教学重难点重点:正弦函数的性质。难点:正弦函数的性质应用。教学工具投影仪教学过程创设情境,揭示课题同学们,我们在数学一中已经学过函数,并掌握了讨论一个函数性质的几个角度,你还记得有哪些吗?在上一次课中,我们已经学习了正弦函数的y=sinx在r上图像,下面请同学们根据图像一起讨论一下它具有哪些性质?探究新知让学生一边看投影,一边仔细观察正弦曲线的图像,并思考以下几个问题:(1)正弦函数的定义域是什么?(2)正弦函数的值域是什么?(3)它的最值情况如何?(4)它的正负值区间如何分?(5)?(x)=0的解集是多少?师生一起归纳得出:1.定义域:y=sinx的定义域为r2.值域:引导回忆单位圆中的正弦函数线,结论:|sinx|≤1(有界性)3/8再看正弦函数线(图象)验证上述结论,所以y=sinx的值域为[-1,1]课后小结归纳整理,整体认识(1)请学生回顾本节课所学过的知识内容有哪些?所涉及的主要数学思想方法有哪些?(2)在本节课的学习过程中,还有那些不太明白的地方,请向老师提出。(3)你在这节课中的表现怎样?你的体会是什么?课后习题作业:习题1—4第3、4、5、6、7题.高二数学教案高二数学教学课程【第二篇】[核心必知]1.预习教材,问题导入根据以下提纲,预习教材p2~p5,回答下列问题.(1)对于一般的二元一次方程组a1x+b1y=c1,①a2x+b2y=c2,②其中a1b2-a2b1≠0,如何写出它的求解步骤?提示:分五步完成:第一步,①×b2-②×b1,得(a1b2-a2b1)x=b2c1-b1c2,③第二步,解③,得x=b2c1-b1c2a1b2-a2b1.4/8第三步,②×a1-①×a2,得(a1b2-a2b1)y=a1c2-a2c1,④第四步,解④,得y=a1c2-a2c1a1b2-a2b1.第五步,得到方程组的解为x=b2c1-b1c2a1b2-a2b1,y=a1c2-a2c1a1b2-a2b1.(2)在数学中算法通常指什么?提示:在数学中,算法通常是指按照一定规则解决某一类问题的明确和有限的步骤.2.归纳总结,核心必记(1)算法的概念12世纪的算法指的是用阿拉伯数字进行算术运算的过程续表数学中的算法通常是指按照一定规则解决某一类问题的明确和有限的步骤现代算法通常可以编成计算机程序,让计算机执行并解决问题(2)设计算法的目的计算机解决任何问题都要依赖于算法.只有将解决问题的过程分解为若干个明确的步骤,即算法,并用计算机能够接受的“语言”准确地描述出来,计算机才能够解决问题.[问题思考](1)求解某一个问题的算法是否是的?提示:不是.5/8(2)任何问题都可以设计算法解决吗?提示:不一定.高二数学教案高二数学教学课程【第三篇】学习目标1.回顾在平面直角坐标系中刻画点的位置的方法.2.能够建立适当的直角坐标系,解决数学问题.学习过程一、学前准备1、通过直角坐标系,平面上的与(),曲线与建立了联系,实现了。2、阅读p3思考得出在直角坐标系中解决实际问题的过程是:二、新课导学◆探究新知(预习教材p1~p4,找出疑惑之处)问题1:如何刻画一个几何图形的位置?问题2:如何创建坐标系?问题3:(1).如何把平面内的点与有序实数对(x,y)建立联系?(2).平面直角坐标系中点和有序实数对(x,y)是怎样的关系?问题4:如何研究曲线与方程间的关系?结合课本例子说明曲线与方程的关系?问题5:如何刻画一个几何图形的位置?6/8需要设定一个参照系(1)、数轴它使直线上任一点p都可以由惟一的实数x确定(2)、平面直角坐标系:在平面上,当取定两条互相垂直的直线的交点为原点,并确定了度量单位和这两条直线的方向,就建立了平面直角坐标系。它使平面上任一点p都可以由惟一的实数对(x,y)确定(3)、空间直角坐标系:在空间中,选择两两垂直且交于一点的三条直线,当取定这三条直线的交点为原点,并确定了度量单位和这三条直线方向,就建立了空间直角坐标系。它使空间上任一点p都可以由惟一的实数对(x,y,z)确定(4)、抽象概括:在平面直角坐标系中,如果某曲线c上的点与一个二元方程f(x,y)=0的实数解建立了如下的关系:a.曲线c上的点坐标都是方程f(x,y)=0的解;b.以方程f(x,y)=0的解为坐标的点都在曲线c上。那么,方程f(x,y)=0叫作曲线c的方程,曲线c叫作方程f(x,y)=0的曲线。问题6:如何建系?根据几何特点选择适当的直角坐标系。(1)如果图形有对称中心,可以选对称中心为坐标原点;(2)如果图形有对称轴,可以选择对称轴为坐标轴;(3)使图形上的特殊点尽可能多的在坐标轴上。高二数学教案高二数学教学课程【第四篇】7/81.预习教材,问题导入根据以下提纲,预习教材p54~p57,回答下列问题.(1)在教材p55的“探究”中,怎样获得样本?提示:将这批小包装饼干放入一个不透明的袋子中,搅拌均匀,然后不放回地摸取.(2)最常用的简单随机抽样方法有哪些?提示:抽签法和随机数法.(3)你认为抽签法有什么优点和缺点?提示:抽签法的优点是简单易行,当总体中个体数不多时较为方便,缺点是当总体中个体数较多时不宜采用.(4)用随机数法读数时可沿哪个方向读取?提示:可以沿向左、向右、向上、向下等方向读数.2.归纳总结,核心必记(1)简单随机抽样:一般地,设一个总体含有n个个体,从中逐个不放回地抽取n个个体作为样本(n≤n),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样.(2)最常用的简单随机抽样方法有两种——抽签法和随机数法.(3)一般地,抽签法就是把总体中的n个个体分段,把号码写在号签上,将号签放在一个容器中,搅拌均匀后,每次从中抽取一个号签,连续抽取n次,就得到一个容量为n的样本.(4)随机数法就是利用随机数表、随机数骰子或计算机产8/8生的随机数进行抽样.(5)简单随机抽样有操作简便易行的优点,在总体个数不多的情况下是行之有效的.[问题思考](1)在简单随机抽样中,某一个个体被抽到的可能性与第几次被抽到有关吗?提示:在简单随机抽样中,总体中的每个个体在每次抽取时被抽到的可能性相同,与第几次被抽到无关.(2)抽签法与随机数法有什么异同点?提示:相同点①都属于简单随机抽样,并且要求被抽取样本的总体的个体数有限;②都是从总体中逐个不放回地进行抽取不同点①抽签法比随机数法操作简单;②随机数法更适用于总体中个体数较多的时候,而抽签法适用于总体中个体数较少的情况,所以当总体中的个体数较多时,应当选用随机数法,可以节约大量的人力和制作号签的成本
本文标题:2024年高二数学教案_高二数学教学课程(通用4篇)
链接地址:https://www.777doc.com/doc-12544098 .html